Crossref journal-article
Springer Science and Business Media LLC
Nature Photonics (297)
Bibliography

Aoki, K., Guimard, D., Nishioka, M., Nomura, M., Iwamoto, S., & Arakawa, Y. (2008). Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity. Nature Photonics, 2(11), 688–692.

Authors 6
  1. Kanna Aoki (first)
  2. Denis Guimard (additional)
  3. Masao Nishioka (additional)
  4. Masahiro Nomura (additional)
  5. Satoshi Iwamoto (additional)
  6. Yasuhiko Arakawa (additional)
References 50 Referenced 166
  1. Lin, S. Y., Chow, E., Hietala, V., Villeneuve, P. R. & Joannopoulos. J. D. Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal. Science 282, 274–276 (1998). (10.1126/science.282.5387.274) / Science by SY Lin (1998)
  2. Knight, J. C., Broeng, J., Birks, T. A. & Russell, P. St. J. Photonic band gap guidance in optical fibers. Science 282, 1476–1478 (1998). (10.1126/science.282.5393.1476) / Science by JC Knight (1998)
  3. Chow, E. et al. Three-dimensional control of light in a two-dimensional photonic crystal slab. Nature 407, 983–986 (2000). (10.1038/35039583) / Nature by E Chow (2000)
  4. Temelkuran, B., Hart, S. D., Benoit, G., Joannopoulos, J. D. & Fink, Y. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature 420, 650–653 (2002). (10.1038/nature01275) / Nature by B Temelkuran (2002)
  5. Loncaˇr, M., Yoshie, T., Scherer, A., Gogna, P. & Qiu, Y. M. Low-threshold photonic crystal laser. Appl. Phys. Lett. 81, 2680–2682 (2002). (10.1063/1.1511538) / Appl. Phys. Lett. by M Loncaˇr (2002)
  6. Nomura, M. et al. Room temperature continuous-wave lasing in photonic crystal nanocavity. Opt. Express 14, 6308–6315 (2006). (10.1364/OE.14.006308) / Opt. Express by M Nomura (2006)
  7. Nomura, M., Iwamoto, S., Kumagai, N. & Arakawa, Y. Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor. Phys. Rev. B 75, 195313 (2007). (10.1103/PhysRevB.75.195313) / Phys. Rev. B by M Nomura (2007)
  8. Akahane, Y., Asano, T., Song, B. S. & Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003). (10.1038/nature02063) / Nature by Y Akahane (2003)
  9. Ryu, H. Y., Notomi, M., Kim, G. H. & Lee, Y. H. High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity. Opt. Express 12, 1708–1719 (2004). (10.1364/OPEX.12.001708) / Opt. Express by HY Ryu (2004)
  10. Song, B. S., Noda, S., Asano, T. & Akahane, Y. Ultra-high-Q photonic double-heterostructure nanocavity. Nature Mater. 4, 207–210 (2005). (10.1038/nmat1320) / Nature Mater. by BS Song (2005)
  11. Kwon, S. H., Sünner, T., Kamp, M. & Forchel, A. Ultrahigh-Q photonic crystal cavity created by modulating air hole radius of a waveguide. Opt. Express 16, 4605–4614 (2008). (10.1364/OE.16.004605) / Opt. Express by SH Kwon (2008)
  12. Lodahl, P. et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430, 654–657 (2004). (10.1038/nature02772) / Nature by P Lodahl (2004)
  13. Fujita, M., Takahashi, S., Tanaka, Y., Asano, T. & Noda, S. Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals. Science 308, 1296–1298 (2005). (10.1126/science.1110417) / Science by M Fujita (2005)
  14. Yoshie, T. et al. Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004). (10.1038/nature03119) / Nature by T Yoshie (2004)
  15. Englund, D. et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 013904 (2005). (10.1103/PhysRevLett.95.013904) / Phys. Rev. Lett. by D Englund (2005)
  16. Kress, A. et al. Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals. Phys. Rev. B 71, 241304 (2005). (10.1103/PhysRevB.71.241304) / Phys. Rev. B by A Kress (2005)
  17. Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896–899 (2007). (10.1038/nature05586) / Nature by K Hennessy (2007)
  18. Englund, D. et al. Controlling cavity reflectivity with a single quantum dot. Nature 450, 857–861 (2007). (10.1038/nature06234) / Nature by D Englund (2007)
  19. Fushman, I. et al. Controlled phase shifts with a single quantum dot. Science 320, 769–772 (2008). (10.1126/science.1154643) / Science by I Fushman (2008)
  20. Johnson, S. G., Fan, S., Villeneuve, P. R., Joannopoulos, J. D. & Kolodzieiski, L. A. Guided modes in photonic-crystal slabs. Phys. Rev. B 60, 5751–5758 (1999). (10.1103/PhysRevB.60.5751) / Phys. Rev. B by SG Johnson (1999)
  21. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics electronics. Phys. Rev. Lett. 58, 2059–2062 (1987). (10.1103/PhysRevLett.58.2059) / Phys. Rev. Lett. by E Yablonovitch (1987)
  22. Ho, K. M., Chan, C. T. & Soukoulis, C. M. Existence of a photonic gap in dielectric periodic structures. Phys. Rev. Lett. 65, 3152–3155 (1990). (10.1103/PhysRevLett.65.3152) / Phys. Rev. Lett. by KM Ho (1990)
  23. Arakawa, Y. & Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939–941 (1982). (10.1063/1.92959) / Appl. Phys. Lett. by Y Arakawa (1982)
  24. Cheng, C. C., Scherer, A., Arbet-Engels, V. & Yablonovitch, E. Lithographic band gap tuning in photonic band gap crystals. J. Vac. Sci. Technol. B 14, 4110–4114 (1996). (10.1116/1.588601) / J. Vac. Sci. Technol. B by CC Cheng (1996)
  25. Blanco, A. et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 405, 437–440 (2000). (10.1038/35013024) / Nature by A Blanco (2000)
  26. Shoji, S. & Kawata, S. Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin. Appl. Phys. Lett. 76, 2668–2670 (2000). (10.1063/1.126438) / Appl. Phys. Lett. by S Shoji (2000)
  27. Kennedy, S. R., Brett, M. J., Toader, O. & John, S. Fabrication of tetragonal square spiral photonic crystals. Nano Lett. 2, 59–62 (2002). (10.1021/nl015635q) / Nano Lett. by SR Kennedy (2002)
  28. Deubel, M. et al. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nature Mater. 3, 444–447 (2004). (10.1038/nmat1155) / Nature Mater. by M Deubel (2004)
  29. Venkataraman, S., Schneider, G. J., Murakowski, J., Shi, S. & Prather, D. W. Fabrication of three-dimensional photonic crystals using silicon micromachining. Appl. Phys. Lett. 85, 2125–2127 (2004). (10.1063/1.1790594) / Appl. Phys. Lett. by S Venkataraman (2004)
  30. Sell, C. et al. Waveguide networks in three-dimensional layer-by-layer photonic crystals. Appl. Phys. Lett. 84, 4605–4607 (2004). (10.1063/1.1751212) / Appl. Phys. Lett. by C Sell (2004)
  31. Qi, M. et al. A three-dimensional optical photonic crystal with designed point defects. Nature 429, 538–542 (2004). (10.1038/nature02575) / Nature by M Qi (2004)
  32. Ha, Y. H. et al. Three-dimensional network photonic crystals via cyclic size reduction/infiltration of sea urchin exoskeleton. Adv. Mater. 16, 1091–1094 (2004). (10.1002/adma.200400131) / Adv. Mater. by YH Ha (2004)
  33. Ogawa, S., Imada, M., Yoshimoto, S., Okano, M. & Noda, S. Control of light by 3D photonic crystals. Science 305, 227–229 (2004). (10.1126/science.1097968) / Science by S Ogawa (2004)
  34. Jun, Y., Leatherdale, C. A. & Norris, D. J. Tailoring air defects in self-assembled photonic bandgap crystals. Adv. Mater. 17, 1908–1911 (2005). (10.1002/adma.200500026) / Adv. Mater. by Y Jun (2005)
  35. Mertens, G. et al. Tuneable defect mode in a three-dimensional photonic crystal. Appl. Phys. Lett. 87, 241108 (2005). (10.1063/1.2139846) / Appl. Phys. Lett. by G Mertens (2005)
  36. Scrimgeour, J. et al. Three-dimensional optical lithography for photonic microstructures. Adv. Mater. 18, 1557–1560 (2006). (10.1002/adma.200502286) / Adv. Mater. by J Scrimgeour (2006)
  37. Arsenault, A. et al. Perfecting imperfection-designer defects in colloidal photonic crystals. Adv. Mater. 18, 2779–2785 (2006). (10.1002/adma.200601332) / Adv. Mater. by A Arsenault (2006)
  38. Rinne, S. A., García-Santamaría, F. & Brown, P. V. Embedded cavities and waveguides in three-dimensional silicon photonic crystals. Nature Photon. 2, 52–56 (2008). (10.1038/nphoton.2007.252) / Nature Photon. by SA Rinne (2008)
  39. Ho, K. M., Chan, C. T., Soukoulis, C. M., Biswas, R. & Sigalas, M. Photonic band gaps in three dimensions: new layer-by-layer periodic structures. Solid State Commun. 89, 413–416 (1994). (10.1016/0038-1098(94)90202-X) / Solid State Commun. by KM Ho (1994)
  40. Guimard, D., Tsukamoto, S., Nishioka, M. & Arakawa, Y. 1.55 µm emission from InAs/GaAs quantum dots grown by metal organic chemical vapour deposition via antimony incorporation. Appl. Phys. Lett. 89, 083116 (2006). (10.1063/1.2337163) / Appl. Phys. Lett. by D Guimard (2006)
  41. Aoki, K. et al. Microassembly of semiconductor three-dimensional photonic crystals. Nature Mater. 2, 117–121 (2003). (10.1038/nmat802) / Nature Mater. by K Aoki (2003)
  42. Okano, M., Chutinan, A. & Noda, S. Analysis and design of single-defect cavities in a three-dimensional photonic crystal. Phys. Rev. B 66, 165211 (2002). (10.1103/PhysRevB.66.165211) / Phys. Rev. B by M Okano (2002)
  43. Guimard, D., Nishioka, M., Tsukamoto, S. & Arakawa, Y. High density InAs/GaAs quantum dots with enhanced photoluminescence intensity using antimony surfactant-mediated metal organic chemical vapour deposition. Appl. Phys. Lett. 89, 183124 (2006). (10.1063/1.2385209) / Appl. Phys. Lett. by D Guimard (2006)
  44. Schneider, C. et al. Lithographic alignment to site-controlled quantum dots for device integration. Appl. Phys. Lett. 92, 183101 (2008). (10.1063/1.2920189) / Appl. Phys. Lett. by C Schneider (2008)
  45. Maldovan, M. Layer-by-layer photonic crystal with a repeating two-layer sequence. Appl. Phys. Lett. 85, 911–913 (2004). (10.1063/1.1777799) / Appl. Phys. Lett. by M Maldovan (2004)
  46. Tang, L. & Yoshie, T. Ultra-high-Q three-dimensional photonic crystal nano-resonators. Opt. Express 15, 17254–17263 (2007). (10.1364/OE.15.017254) / Opt. Express by L Tang (2007)
  47. Edagawa, K., Kanoko, S. & Notomi, M. Photonic amorphous diamond structure with a 3D photonic band gap. Phys. Rev. Lett. 100, 013901 (2008). (10.1103/PhysRevLett.100.013901) / Phys. Rev. Lett. by K Edagawa (2008)
  48. Håkansson, A. & Sánchez-Dehesa, J. Optimal design of microscaled scattering optical elements. Appl. Phys. Lett. 87, 193506 (2005). (10.1063/1.2126134) / Appl. Phys. Lett. by A Håkansson (2005)
  49. Håkansson, A., Miyazaki, H. T. & Sánchez-Dehesa, J. Inverse design for full control of spontaneous emission light emitting using scattering optical elements. Phys. Rev. Lett. 96, 153902 (2006). (10.1103/PhysRevLett.96.153902) / Phys. Rev. Lett. by A Håkansson (2006)
  50. Håkansson, A. Cloaking of objects from electromagnetic fields by inverse design of scattering optical elements. Opt. Express 15, 4328–4334 (2007). (10.1364/OE.15.004328) / Opt. Express by A Håkansson (2007)
Dates
Type When
Created 16 years, 10 months ago (Oct. 5, 2008, 1:09 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 7:54 p.m.)
Indexed 5 months ago (March 22, 2025, 5:09 a.m.)
Issued 16 years, 10 months ago (Oct. 5, 2008)
Published 16 years, 10 months ago (Oct. 5, 2008)
Published Online 16 years, 10 months ago (Oct. 5, 2008)
Published Print 16 years, 9 months ago (Nov. 1, 2008)
Funders 0

None

@article{Aoki_2008, title={Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity}, volume={2}, ISSN={1749-4893}, url={http://dx.doi.org/10.1038/nphoton.2008.202}, DOI={10.1038/nphoton.2008.202}, number={11}, journal={Nature Photonics}, publisher={Springer Science and Business Media LLC}, author={Aoki, Kanna and Guimard, Denis and Nishioka, Masao and Nomura, Masahiro and Iwamoto, Satoshi and Arakawa, Yasuhiko}, year={2008}, month=oct, pages={688–692} }