Crossref journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Authors 10
  1. Yu Ye (first)
  2. Jun Xiao (additional)
  3. Hailong Wang (additional)
  4. Ziliang Ye (additional)
  5. Hanyu Zhu (additional)
  6. Mervin Zhao (additional)
  7. Yuan Wang (additional)
  8. Jianhua Zhao (additional)
  9. Xiaobo Yin (additional)
  10. Xiang Zhang (additional)
References 32 Referenced 300
  1. Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2 . Nature 514, 205–208 (2014). (10.1038/nature13763) / Nature by MN Ali (2014)
  2. Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012). (10.1038/ncomms1882) / Nature Commun by T Cao (2012)
  3. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012). (10.1038/nnano.2012.95) / Nature Nanotech by H Zeng (2012)
  4. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012). (10.1038/nnano.2012.96) / Nature Nanotech by KF Mak (2012)
  5. Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008). (10.1103/PhysRevB.77.235406) / Phys. Rev. B by W Yao (2008)
  6. Xiao, D., Liu, G. B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayer of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012). (10.1103/PhysRevLett.108.196802) / Phys. Rev. Lett. by D Xiao (2012)
  7. Zhu, B., Chen, X. & Cui, X. Exciton binding energy of monolayer WS2 . Sci. Rep. 5, 9218 (2015). (10.1038/srep09218) / Sci. Rep. by B Zhu (2015)
  8. Ye, Z. et al. Probing excitonic dark states in single-layer tungsten disulfide. Nature 513, 214–218 (2014). (10.1038/nature13734) / Nature by Z Ye (2014)
  9. Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2 . Phys. Rev. Lett. 113, 076802 (2014). (10.1103/PhysRevLett.113.076802) / Phys. Rev. Lett. by A Chernikov (2014)
  10. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010). (10.1103/PhysRevLett.105.136805) / Phys. Rev. Lett by KF Mak (2010)
  11. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010). (10.1021/nl903868w) / Nano Lett. by A Splendiani (2010)
  12. Lagarde, D. et al. Carrier and polarization dynamics in monolayer MoS2 . Phys. Rev. Lett. 112, 047401 (2014). (10.1103/PhysRevLett.112.047401) / Phys. Rev. Lett. by D Lagarde (2014)
  13. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nature Phys. 10, 343–350 (2014). (10.1038/nphys2942) / Nature Phys. by X Xu (2014)
  14. Ovchinnkov, D., Allain, A., Huang, Y., Dumcenco, D. & Kis, A. Electrical transport properties of single-layer WS2 . ACS Nano 8, 8174–8181 (2014). (10.1021/nn502362b) / ACS Nano by D Ovchinnkov (2014)
  15. Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nature Nanotech. 9, 268–272 (2014). (10.1038/nnano.2014.26) / Nature Nanotech by JS Ross (2014)
  16. Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nature Nanotech. 9, 262–267 (2014). (10.1038/nnano.2014.25) / Nature Nanotech by BWH Baugher (2014)
  17. Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nature Nanotech. 9, 257–161 (2014). (10.1038/nnano.2014.14) / Nature Nanotech by A Pospischil (2014)
  18. Zhang, Y. J., Oka, T., Suzuki, R., Ye, J. T. & Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science 344, 725–728 (2014). (10.1126/science.1251329) / Science by YJ Zhang (2014)
  19. Cheng, R. et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 14, 5590–5597 (2014). (10.1021/nl502075n) / Nano Lett. by R Cheng (2014)
  20. Cheiwchanchamnangij, T. & Lambrecht, W. R. L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2 . Phys. Rev. B 85, 205302 (2012). (10.1103/PhysRevB.85.205302) / Phys. Rev. B by T Cheiwchanchamnangij (2012)
  21. Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nature Commun. 4, 1474 (2013). (10.1038/ncomms2498) / Nature Commun. by JS Ross (2013)
  22. Zhang, Y. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2 . Nature Nanotech. 9, 111–115 (2014). (10.1038/nnano.2013.277) / Nature Nanotech by Y Zhang (2014)
  23. Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J. & Schüller, C. Low-temperature photocarrier dynamics in monolayer MoS2 . Appl. Phys. Lett. 99, 102109 (2011). (10.1063/1.3636402) / Appl. Phys. Lett by T Korn (2011)
  24. Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999). (10.1038/45509) / Nature by Y Ohno (1999)
  25. Flederling, R. et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787–790 (1999). (10.1038/45502) / Nature by R Flederling (1999)
  26. Ghosh, S. & Bhattacharya, P. Surface-emitting spin polarized In0.4Ga0.6As/GaAs quantum-dot light-emitting diode. Appl. Phys. Lett. 80, 658–660 (2002). (10.1063/1.1436526) / Appl. Phys. Lett by S Ghosh (2002)
  27. Chen, L. et al. Easy axis reorientation and magneto-crystalline anisotropic resistance of tensile strained (Ga,Mn)As films. J. Magn. Magn. Mater. 322, 3250–3254 (2010). (10.1016/j.jmmm.2010.06.002) / J. Magn. Magn. Mater. by L Chen (2010)
  28. Kioseoglou, G. et al. Valley polarization and intervalley scattering in monolayer MoS2 . Appl. Phys. Lett. 101, 221907 (2012). (10.1063/1.4768299) / Appl. Phys. Lett. by G Kioseoglou (2012)
  29. Yu, T. & Wu, W. Valley depolarization due to intervalley and intravalley electron–hole exchange interactions in monolayer MoS2 . Phys. Rev. B 89, 205303 (2014). (10.1103/PhysRevB.89.205303) / Phys. Rev. B by T Yu (2014)
  30. Olejník, K. et al. Enhanced annealing, high Curie temperature, and low-voltage gating in (Ga,Mn)As: A surface oxide control study. Phys. Rev. B 78, 054403 (2008). (10.1103/PhysRevB.78.054403) / Phys. Rev. B by K Olejník (2008)
  31. Wang, Q. et al. Valley carrier dynamics in monolayer molybdenum disulfide from helicity-resolved ultrafast pump-probe spectroscopy. ACS Nano 7, 11087–11093 (2013). (10.1021/nn405419h) / ACS Nano by Q Wang (2013)
  32. Zhu, B., Zeng, H., Dai, J., Gong, Z. & Cui, X. Anomalously robust valley polarization and valley coherence in bilayer WS2 . Proc. Natl Acad. Sci. USA 111, 11606–11611 (2014). (10.1073/pnas.1406960111) / Proc. Natl Acad. Sci. USA by B Zhu (2014)
Dates
Type When
Created 9 years, 5 months ago (April 1, 2016, 8:53 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 7:48 p.m.)
Indexed 4 days, 17 hours ago (Aug. 29, 2025, 5:47 a.m.)
Issued 9 years, 4 months ago (April 4, 2016)
Published 9 years, 4 months ago (April 4, 2016)
Published Online 9 years, 4 months ago (April 4, 2016)
Published Print 9 years, 2 months ago (July 1, 2016)
Funders 0

None

@article{Ye_2016, title={Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide}, volume={11}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2016.49}, DOI={10.1038/nnano.2016.49}, number={7}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Ye, Yu and Xiao, Jun and Wang, Hailong and Ye, Ziliang and Zhu, Hanyu and Zhao, Mervin and Wang, Yuan and Zhao, Jianhua and Yin, Xiaobo and Zhang, Xiang}, year={2016}, month=apr, pages={598–602} }