Crossref journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Bibliography

Fukami, S., Anekawa, T., Zhang, C., & Ohno, H. (2016). A spin–orbit torque switching scheme with collinear magnetic easy axis and current configuration. Nature Nanotechnology, 11(7), 621–625.

Authors 4
  1. S. Fukami (first)
  2. T. Anekawa (additional)
  3. C. Zhang (additional)
  4. H. Ohno (additional)
References 29 Referenced 581
  1. Slaughter, J. M. et al. in 2012 IEEE Int. Electron Devices Meet. 29.3.1–29.3.4 (IEEE, 2012); http://dx.doi.org/10.1109/IEDM.2012.6479128 . (10.1109/IEDM.2012.6479128)
  2. Fukami, S., Yamanouchi, M., Ikeda, S. & Ohno, H. Domain wall motion device for nonvolatile memory and logic—size dependence of device properties. IEEE Trans. Magn. 50, 3401006 (2014). (10.1109/TMAG.2014.2321396) / IEEE Trans. Magn by S Fukami (2014)
  3. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011). (10.1038/nature10309) / Nature by IM Miron (2011)
  4. Liu, L. et al. Spin–torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012). (10.1126/science.1218197) / Science by L Liu (2012)
  5. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012). (10.1103/PhysRevLett.109.096602) / Phys. Rev. Lett by L Liu (2012)
  6. Pai, C.-F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404 (2012). (10.1063/1.4753947) / Appl. Phys. Lett by C-F Pai (2012)
  7. Yamanouchi, M. et al. Three terminal magnetic tunnel junction utilizing the spin Hall effect of iridium-doped copper. Appl. Phys. Lett. 102, 212408 (2013). (10.1063/1.4808033) / Appl. Phys. Lett by M Yamanouchi (2013)
  8. Emori, S., Bauer, U., Ahn, S. M., Martinez, E. & Beach, G. S. Current-driven dynamics of chiral ferromagnetic domain walls. Nature Mater. 12, 611–616 (2013). (10.1038/nmat3675) / Nature Mater by S Emori (2013)
  9. Zhang, C. et al. Magnetization reversal induced by in-plane current in Ta/CoFeB/MgO structures with perpendicular magnetic easy axis. J. Appl. Phys. 115, 17C714 (2014). (10.1063/1.4863260) / J. Appl. Phys by C Zhang (2014)
  10. Cubukcu, M. et al. Spin–orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction. Appl. Phys. Lett. 104, 042406 (2014). (10.1063/1.4863407) / Appl. Phys. Lett by M Cubukcu (2014)
  11. Sakimura, N. et al. in Proc. 2014 IEEE Int. Solid-State Circuits Conf. 184–185 (IEEE, 2014). (10.1109/ISSCC.2014.6757392)
  12. Yu, G. et al. Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nature Nanotech. 9, 548–554 (2014). (10.1038/nnano.2014.94) / Nature Nanotech by G Yu (2014)
  13. Lo Conte, R. et al. Spin–orbit torque-driven magnetization switching and thermal effects studied in Ta/CoFeB/MgO nanowires. Appl. Phys. Lett. 105, 122404 (2014). (10.1063/1.4896225) / Appl. Phys. Lett by R Lo Conte (2014)
  14. Garello, K. et al. Ultrafast magnetization switching by spin–orbit torques. Appl. Phys. Lett. 105, 212402 (2014). (10.1063/1.4902443) / Appl. Phys. Lett by K Garello (2014)
  15. Qiu, X. et al. Spin–orbit–torque engineering via oxygen manipulation. Nature Nanotech. 10, 333–338 (2015). (10.1038/nnano.2015.18) / Nature Nanotech by X Qiu (2015)
  16. Manchon, A. & Zhang, S. Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. Phys. Rev. B 78, 212405 (2008). (10.1103/PhysRevB.78.212405) / Phys. Rev. B by A Manchon (2008)
  17. Lee, K.-S., Lee, S.-W., Min, B.-C. & Lee, K.-J. Threshold current for switching of a perpendicular magnetic layer induced by spin Hall effect. Appl. Phys. Lett. 102, 112410 (2013). (10.1063/1.4798288) / Appl. Phys. Lett by K-S Lee (2013)
  18. Haney, P. M., Lee, H.-W., Lee, K.-J., Manchon, A. & Stiles, M. D. Current induced torques and interfacial spin–orbit coupling: semiclassical modeling. Phys. Rev. B 87, 174411 (2013). (10.1103/PhysRevB.87.174411) / Phys. Rev. B by PM Haney (2013)
  19. Finocchio, G., Carpentieri, M., Martinez, E. & Azzerboni, B. Switching of a single ferromagnetic layer driven by spin Hall effect. Appl. Phys. Lett. 102, 212410 (2013). (10.1063/1.4808092) / Appl. Phys. Lett by G Finocchio (2013)
  20. Lee, K.-S., Lee, S.-W., Min, B.-C. & Lee, K.-J. Thermally activated switching of perpendicular magnet by spin–orbit spin torque. Appl. Phys. Lett. 104, 072413 (2014). (10.1063/1.4866186) / Appl. Phys. Lett by K-S Lee (2014)
  21. Suzuki, T. et al. Current-induced effective field in perpendicularly magnetized Ta/CoFeB/MgO wire. Appl. Phys. Lett. 98, 142505 (2011). (10.1063/1.3579155) / Appl. Phys. Lett by T Suzuki (2011)
  22. Kim, J. et al. Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO. Nature Mater. 12, 240–245 (2013). (10.1038/nmat3522) / Nature Mater by J Kim (2013)
  23. Zhang, C. et al. Magnetotransport measurements of current induced effective fields in Ta/CoFeB/MgO. Appl. Phys. Lett. 103, 262407 (2013). (10.1063/1.4859656) / Appl. Phys. Lett by C Zhang (2013)
  24. Fan, X. et al. Observation of the nonlocal spin–orbital effective field. Nature Commun. 4, 1799 (2013). (10.1038/ncomms2709) / Nature Commun by X Fan (2013)
  25. Garello, K. et al. Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nature Nanotech. 8, 587–593 (2013). (10.1038/nnano.2013.145) / Nature Nanotech by K Garello (2013)
  26. Skinner, T. D. et al. Spin–orbit torque opposing the Oersted torque in ultrathin Co/Pt bilayers. Appl. Phys. Lett. 104, 062401 (2014). (10.1063/1.4864399) / Appl. Phys. Lett by TD Skinner (2014)
  27. Ikeda, S. et al. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nature Mater. 9, 721–724 (2010). (10.1038/nmat2804) / Nature Mater by S Ikeda (2010)
  28. Oh, S.-C. et al. Bias-voltage dependence of perpendicular spin-transfer torque in asymmetric MgO-based magnetic tunnel junctions. Nature Phys. 5, 898–902 (2009). (10.1038/nphys1427) / Nature Phys by S-C Oh (2009)
  29. Lee, O. J. et al. Central role of domain wall depinning for perpendicular magnetization switching driven by spin torque from the spin Hall effect. Phys. Rev. B 89, 024418 (2014). (10.1103/PhysRevB.89.024418) / Phys. Rev. B by OJ Lee (2014)
Dates
Type When
Created 9 years, 5 months ago (March 18, 2016, 6:20 a.m.)
Deposited 2 months, 3 weeks ago (June 1, 2025, 4:53 p.m.)
Indexed 12 hours, 33 minutes ago (Aug. 23, 2025, 9:17 p.m.)
Issued 9 years, 5 months ago (March 21, 2016)
Published 9 years, 5 months ago (March 21, 2016)
Published Online 9 years, 5 months ago (March 21, 2016)
Published Print 9 years, 1 month ago (July 1, 2016)
Funders 0

None

@article{Fukami_2016, title={A spin–orbit torque switching scheme with collinear magnetic easy axis and current configuration}, volume={11}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2016.29}, DOI={10.1038/nnano.2016.29}, number={7}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Fukami, S. and Anekawa, T. and Zhang, C. and Ohno, H.}, year={2016}, month=mar, pages={621–625} }