Crossref journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Bibliography

He, Y., Zhong, L., Fan, F., Wang, C., Zhu, T., & Mao, S. X. (2016). In situ observation of shear-driven amorphization in silicon crystals. Nature Nanotechnology, 11(10), 866–871.

Authors 6
  1. Yang He (first)
  2. Li Zhong (additional)
  3. Feifei Fan (additional)
  4. Chongmin Wang (additional)
  5. Ting Zhu (additional)
  6. Scott X. Mao (additional)
References 33 Referenced 97
  1. Johnson, W. L. Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials. Prog. Mater. Sci. 30, 81–134 (1986). (10.1016/0079-6425(86)90005-8) / Prog. Mater. Sci by WL Johnson (1986)
  2. Mott, N. F. Electrons in disordered structures. Adv. Phys. 50, 865–945 (2001). (10.1080/00018730110102727) / Adv. Phys by NF Mott (2001)
  3. Treacy, M. M. & Borisenko, K. B. The local structure of amorphous silicon. Science 335, 950–953 (2012). (10.1126/science.1214780) / Science by MM Treacy (2012)
  4. Zhong, L., Wang, J., Sheng, H., Zhang, Z. & Mao, S. X. Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 512, 177–180 (2014). (10.1038/nature13617) / Nature by L Zhong (2014)
  5. Bauer, J., Schroer, A., Schwaiger, R. & Kraft, O. Approaching theoretical strength in glassy carbon nanolattices. Nat. Mater. 15, 438–443 (2016). (10.1038/nmat4561) / Nat. Mater by J Bauer (2016)
  6. Takeda, S. & Yamasaki, J. Amorphization in silicon by electron irradiation. Phys. Rev. Lett. 83, 320–323 (1999). (10.1103/PhysRevLett.83.320) / Phys. Rev. Lett by S Takeda (1999)
  7. Gamero-Castaño, M., Torrents, A., Valdevit, L. & Zheng, J. Pressure-induced amorphization in silicon caused by the impact of electrosprayed nanodroplets. Phys. Rev. Lett. 105, 145701 (2010). (10.1103/PhysRevLett.105.145701) / Phys. Rev. Lett by M Gamero-Castaño (2010)
  8. Zhao, S. et al. Amorphization and nanocrystallization of silicon under shock compression. Acta Mater. 103, 519–533 (2016). (10.1016/j.actamat.2015.09.022) / Acta Mater by S Zhao (2016)
  9. Zhao, S. et al. Pressure and shear-induced amorphization of silicon. Extrem. Mech. Lett. 5, 74–80 (2015). (10.1016/j.eml.2015.10.001) / Extrem. Mech. Lett by S Zhao (2015)
  10. Huang, J. Y., Yasuda, H. & Mori, H. Deformation induced amorphization in ball milled silicon. Phil. Mag. Lett. 79, 305–314 (1999). (10.1080/095008399177147) / Phil. Mag. Lett by JY Huang (1999)
  11. Deb, S. K., Wilding, M., Somayazulu, M. & McMillan, P. F. Pressure-induced amorphization and an amorphous-amorphous transition in densified porous Si. Nature 414, 528–530 (2001). (10.1038/35107036) / Nature by SK Deb (2001)
  12. Minowa, K. & Sumino, K. Stress-induced amorphization of silicon crystal by mechanical scratching. Phys. Rev. Lett. 69, 320–322 (1992). (10.1103/PhysRevLett.69.320) / Phys. Rev. Lett by K Minowa (1992)
  13. Wu, K., Yan, X. Q. & Chen, M. W. In situ Raman characterization of reversible phase transition in stress-induced amorphous silicon. Appl. Phys. Lett. 91, 101903 (2007). (10.1063/1.2779933) / Appl. Phys. Lett by K Wu (2007)
  14. Cook, R. F. Strength and sharp contact fracture of silicon. J. Mater. Sci. 41, 841–872 (2006). (10.1007/s10853-006-6567-y) / J. Mater. Sci by RF Cook (2006)
  15. Kailer, A., Gogotsi, Y. G. & Nickel, K. G. Phase transformations of silicon caused by contact loading. J. Appl. Phys. 81, 3057–3063 (1997). (10.1063/1.364340) / J. Appl. Phys by A Kailer (1997)
  16. Domnich, V. & Gogotsi, Y. Phase transformation in silicon under contact loading. Rev. Adv. Mater. Sci. 3, 1–36 (2002). (10.1016/S1468-6996(01)00150-4) / Rev. Adv. Mater. Sci by V Domnich (2002)
  17. Ruffell, S., Bradby, J. E., Williams, J. S. & Munroe, P. Formation and growth of nanoindentation-induced high pressure phases in crystalline and amorphous silicon. J. Appl. Phys. 102, 063521 (2007). (10.1063/1.2781394) / J. Appl. Phys by S Ruffell (2007)
  18. Minor, A. M. et al. Room temperature dislocation plasticity in silicon. Phil. Mag. 85, 323–330 (2005). (10.1080/14786430412331315680) / Phil. Mag by AM Minor (2005)
  19. Han, X. D. et al. Low-temperature in situ large-strain plasticity of silicon nanowires. Adv. Mater. 19, 2112–2118 (2007). (10.1002/adma.200602705) / Adv. Mater by XD Han (2007)
  20. Östlund, F. et al. Brittle-to-ductile transition in uniaxial compression of silicon pillars at room temperature. Adv. Funct. Mater. 19, 2439–2444 (2009). (10.1002/adfm.200900418) / Adv. Funct. Mater by F Östlund (2009)
  21. Gerberich, W. W., Stauffer, D. D., Beaber, A. R. & Tymiak, N. I. A brittleness transition in silicon due to scale. J. Mater. Res. 27, 552–561 (2011). (10.1557/jmr.2011.348) / J. Mater. Res by WW Gerberich (2011)
  22. Wagner, A. J., Hintsala, E. D., Kumar, P., Gerberich, W. W. & Mkhoyan, K. A. Mechanisms of plasticity in near-theoretical strength sub-100 nm Si nanocubes. Acta Mater. 100, 256–265 (2015). (10.1016/j.actamat.2015.08.029) / Acta Mater by AJ Wagner (2015)
  23. Huang, S., Zhang, S., Belytschko, T., Terdalkar, S. S. & Zhu, T. Mechanics of nanocrack: fracture, dislocation emission, and amorphization. J. Mech. Phys. Solids 57, 840–850 (2009). (10.1016/j.jmps.2009.01.006) / J. Mech. Phys. Solids by S Huang (2009)
  24. Zhu, T. & Li, J. Ultra-strength materials. Prog. Mater. Sci. 55, 710–757 (2010). (10.1016/j.pmatsci.2010.04.001) / Prog. Mater. Sci by T Zhu (2010)
  25. Chrobak, D. et al. Deconfinement leads to changes in the nanoscale plasticity of silicon. Nat. Nanotech. 6, 480–484 (2011). (10.1038/nnano.2011.118) / Nat. Nanotech by D Chrobak (2011)
  26. Pizzagalli, L., Godet, J., Guénolé, J. & Brochard, S. Dislocation cores in silicon: new aspects from numerical simulations. J. Phys. 281, 012002 (2011). / J. Phys by L Pizzagalli (2011)
  27. Rabier, J. et al. Plastic deformation of silicon between 20 °C and 425 °C. Phys. Status Solidi C 4, 3110–3114 (2007). (10.1002/pssc.200675480) / Phys. Status Solidi C by J Rabier (2007)
  28. Kasper, J. S. & Wentorf, R. H. Hexagonal (wurtzite) silicon. Science 197, 599 (1977). (10.1126/science.197.4303.599) / Science by JS Kasper (1977)
  29. Pirouz, P., Chaim, R., Dahmen, U. & Westmacott, K. H. The martensitic transformation in silicon-I. Experimental observation. Acta Metall. Mater. 38, 313–322 (1990). (10.1016/0956-7151(90)90061-K) / Acta Metall. Mater by P Pirouz (1990)
  30. Tan, T. Y., Föll, H. & Hu, S. M. On the diamond-cubic to hexagonal phase transformation in silicon. Phil. Mag. A 44, 127–140 (1981). (10.1080/01418618108244498) / Phil. Mag. A by TY Tan (1981)
  31. Rudee, M. L. & Howie, A. The structure of amorphous Si and Ge. Phil. Mag. 25, 1001–1007 (1972). (10.1080/14786437208229319) / Phil. Mag by ML Rudee (1972)
  32. Borisenko, K. B. et al. Medium-range order in amorphous silicon investigated by constrained structural relaxation of two-body and four-body electron diffraction data. Acta Mater. 60, 359–375 (2012). (10.1016/j.actamat.2011.09.039) / Acta Mater by KB Borisenko (2012)
  33. Yin, M. T. & Cohen, M. L. Microscopic theory of the phase transformation and lattice dynamics of Si. Phys. Rev. Lett. 45, 1004–1007 (1980). (10.1103/PhysRevLett.45.1004) / Phys. Rev. Lett by MT Yin (1980)
Dates
Type When
Created 8 years, 11 months ago (Sept. 16, 2016, 9:26 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 7:46 p.m.)
Indexed 1 day, 17 hours ago (Aug. 19, 2025, 5:59 a.m.)
Issued 8 years, 11 months ago (Sept. 19, 2016)
Published 8 years, 11 months ago (Sept. 19, 2016)
Published Online 8 years, 11 months ago (Sept. 19, 2016)
Published Print 8 years, 10 months ago (Oct. 1, 2016)
Funders 0

None

@article{He_2016, title={In situ observation of shear-driven amorphization in silicon crystals}, volume={11}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2016.166}, DOI={10.1038/nnano.2016.166}, number={10}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={He, Yang and Zhong, Li and Fan, Feifei and Wang, Chongmin and Zhu, Ting and Mao, Scott X.}, year={2016}, month=sep, pages={866–871} }