Crossref journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Bibliography

Leven, I., Guerra, R., Vanossi, A., Tosatti, E., & Hod, O. (2016). Multiwalled nanotube faceting unravelled. Nature Nanotechnology, 11(12), 1082–1086.

Authors 5
  1. Itai Leven (first)
  2. Roberto Guerra (additional)
  3. Andrea Vanossi (additional)
  4. Erio Tosatti (additional)
  5. Oded Hod (additional)
References 45 Referenced 57
  1. Liu, M. & Cowley, J. M. Structures of the helical carbon nanotubes. Carbon 32, 393–403 (1994). (10.1016/0008-6223(94)90159-7) / Carbon by M Liu (1994)
  2. Gogotsi, Y., Libera, J. A., Kalashnikov, N. & Yoshimura, M. Graphite polyhedral crystals. Science 290, 317–320 (2000). (10.1126/science.290.5490.317) / Science by Y Gogotsi (2000)
  3. Zhang, G., Jiang, X. & Wang, E. Tubular graphite cones. Science 300, 472–474 (2003). (10.1126/science.1082264) / Science by G Zhang (2003)
  4. Zhang, G. Y., Bai, X. D., Wang, E. G., Guo, Y. & Guo, W. Monochiral tubular graphite cones formed by radial layer-by-layer growth. Phys. Rev. B 71, 113411 (2005). (10.1103/PhysRevB.71.113411) / Phys. Rev. B by GY Zhang (2005)
  5. Celik-Aktas, A., Zuo, J. M., Stubbins, J. F., Tang, C. C. & Bando, Y. Double-helix structure in multiwall boron nitride nanotubes. Acta Crystallogr. Sect. A 61, 533–541 (2005). (10.1107/S0108767305026723) / Acta Crystallogr. Sect. A by A Celik-Aktas (2005)
  6. Golberg, D., Mitome, M., Bando, Y., Tang, C. C. & Zhi, C. Y. Multi-walled boron nitride nanotubes composed of diverse cross-section and helix type shells. Appl. Phys. A 88, 347–352 (2007). (10.1007/s00339-007-3950-8) / Appl. Phys. A by D Golberg (2007)
  7. Garel, J. et al. Ultrahigh torsional stiffness and strength of boron nitride nanotubes. Nano Lett. 12, 6347–6352 (2012). (10.1021/nl303601d) / Nano Lett. by J Garel (2012)
  8. Garel, J. et al. BCN nanotubes as highly sensitive torsional electromechanical transducers. Nano Lett. 14, 6132–6137 (2014). (10.1021/nl502161h) / Nano Lett. by J Garel (2014)
  9. Nigues, A., Siria, A., Vincent, P., Poncharal, P. & Bocquet, L. Ultrahigh interlayer friction in multiwalled boron nitride nanotubes. Nat. Mater. 13, 688–693 (2014). (10.1038/nmat3985) / Nat. Mater. by A Nigues (2014)
  10. Golberg, D. et al. Boron nitride nanotubes and nanosheets. ACS Nano 4, 2979–2993 (2010). (10.1021/nn1006495) / ACS Nano by D Golberg (2010)
  11. De Volder, M. F. L., Tawfick, S. H., Baughman, R. H. & Hart, A. J. Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013). (10.1126/science.1222453) / Science by MFL De Volder (2013)
  12. Arash, B., Wang, Q. & Varadan, V. K. Mechanical properties of carbon nanotube/polymer composites. Sci. Rep. 4, 6479 (2014). (10.1038/srep06479) / Sci. Rep. by B Arash (2014)
  13. Yoon, M., Howe, J., Tibbetts, G., Eres, G. & Zhang, Z. Polygonization and anomalous graphene interlayer spacing of multi-walled carbon nanofibers. Phys. Rev. B 75, 165402 (2007). (10.1103/PhysRevB.75.165402) / Phys. Rev. B by M Yoon (2007)
  14. Golovaty, D. & Talbott, S. Continuum model of polygonization of carbon nanotubes. Phys. Rev. B 77, 081406(R) (2008). (10.1103/PhysRevB.77.081406) / Phys. Rev. B by D Golovaty (2008)
  15. Tibbetts, K., Doe, R. & Ceder, G. Polygonal model for layered inorganic nanotubes. Phys. Rev. B 80, 014102 (2009). (10.1103/PhysRevB.80.014102) / Phys. Rev. B by K Tibbetts (2009)
  16. Mu, W., Zhang, G. & Ou-Yang, Z. Spontaneous polygonization of multiwalled carbon nanotubes: perturbation analysis. Jpn. J. Appl. Phys. 51, 065101 (2012). (10.7567/JJAP.51.065101) / Jpn. J. Appl. Phys. by W Mu (2012)
  17. Palser, A. H. R. Interlayer interactions in graphite and carbon nanotubes. Phys. Chem. Chem. Phys. 1, 4459–4464 (1999). (10.1039/a905154f) / Phys. Chem. Chem. Phys. by AHR Palser (1999)
  18. Hod, O. Quantifying the stacking registry matching in layered materials. Isr. J. Chem. 50, 506–514 (2010). (10.1002/ijch.201000052) / Isr. J. Chem. by O Hod (2010)
  19. Koshino, M., Moon, P. & Son, Y.-W. Incommensurate double-walled carbon nanotubes as one-dimensional moiré crystals. Phys. Rev. B 91, 035405 (2015). (10.1103/PhysRevB.91.035405) / Phys. Rev. B by M Koshino (2015)
  20. Kolmogorov, A. N. & Crespi, V. H. Smoothest bearings: interlayer sliding in multiwalled carbon nanotubes. Phys. Rev. Lett. 85, 4727–4730 (2000). (10.1103/PhysRevLett.85.4727) / Phys. Rev. Lett. by AN Kolmogorov (2000)
  21. Hashimoto, A. et al. Atomic correlation between adjacent graphene layers in double-wall carbon nanotubes. Phys. Rev. Lett. 94, 045504 (2005). (10.1103/PhysRevLett.94.045504) / Phys. Rev. Lett. by A Hashimoto (2005)
  22. Schouteden, K., Volodin, A., Li, Z. & Van Haesendonck, C. Atomically resolved Moiré-type superstructures in double-walled carbon nanotubes. Carbon 61, 379–385 (2013). (10.1016/j.carbon.2013.05.020) / Carbon by K Schouteden (2013)
  23. Hod, O. Graphite and hexagonal boron-nitride have the same interlayer distance. Why? J. Chem. Theory and Comput. 8, 1360–1369 (2012). (10.1021/ct200880m) / J. Chem. Theory and Comput. by O Hod (2012)
  24. Golberg, D. et al. Fine structure of boron nitride nanotubes produced from carbon nanotubes by a substitution reaction. J. Appl. Phys. 86, 2364–2366 (1999). (10.1063/1.371058) / J. Appl. Phys. by D Golberg (1999)
  25. Golberg, D., Bando, Y., Kurashima, K. & Sato, T. Ropes of BN multi-walled nanotubes. Solid State Commun. 116, 1–6 (2000). (10.1016/S0038-1098(00)00281-7) / Solid State Commun. by D Golberg (2000)
  26. Celik-Aktas, A., Zuo, J. M., Stubbins, J. F., Tang, C. & Bando, Y. Structure and chirality distribution of multiwalled boron nitride nanotubes. Appl. Phys. Lett. 86, 133110 (2005). (10.1063/1.1885177) / Appl. Phys. Lett. by A Celik-Aktas (2005)
  27. Xu, Z., Bai, X., Wang, Z. L. & Wang, E. Multiwall carbon nanotubes made of monochirality graphite shells. J. Am. Chem. Soc. 128, 1052–1053 (2006). (10.1021/ja057303j) / J. Am. Chem. Soc. by Z Xu (2006)
  28. Zuo, J. M., Vartanyants, I., Gao, M., Zhang, R. & Nagahara, L. A. Atomic resolution imaging of a carbon nanotube from diffraction intensities. Science 300, 1419–1421 (2003). (10.1126/science.1083887) / Science by JM Zuo (2003)
  29. Li, F. et al. Identification of the constituents of double-walled carbon nanotubes using Raman spectra taken with different laser-excitation energies. J. Mater. Res. 18, 1251–1258 (2003). (10.1557/JMR.2003.0172) / J. Mater. Res. by F Li (2003)
  30. Koziol, K., Shaffer, M. & Windle, A. Three-dimensional internal order in multiwalled carbon nanotubes grown by chemical vapor deposition. Adv. Mater. 17, 760–763 (2005). (10.1002/adma.200401791) / Adv. Mater. by K Koziol (2005)
  31. Ducati, C. et al. Crystallographic order in multi-walled carbon nanotubes synthesized in the presence of nitrogen. Small 2, 774–784 (2006). (10.1002/smll.200500513) / Small by C Ducati (2006)
  32. Hirahara, K. et al. Chirality correlation in double-wall carbon nanotubes as studied by electron diffraction. Phys. Rev. B 73, 195420 (2006). (10.1103/PhysRevB.73.195420) / Phys. Rev. B by K Hirahara (2006)
  33. Gao, M., Zuo, J. M., Zhang, R. & Nagahara, L. A. Structure determinations of double-wall carbon nanotubes grown by catalytic chemical vapor deposition. J. Mater. Sci. 41, 4382–4388 (2006). (10.1007/s10853-006-0146-0) / J. Mater. Sci. by M Gao (2006)
  34. Guan, L., Suenaga, K. & Iijima, S. Smallest carbon nanotube assigned with atomic resolution accuracy. Nano Lett. 8, 459–462 (2008). (10.1021/nl072396j) / Nano Lett. by L Guan (2008)
  35. Guo, W. & Guo, Y. Energy optimum chiralities of multiwalled carbon nanotubes. J. Am. Chem. Soc. 129, 2730–2731 (2007). (10.1021/ja0662063) / J. Am. Chem. Soc. by W Guo (2007)
  36. Liu, K. H. et al. Van der Waals-coupled electronic states in incommensurate double-walled carbon nanotubes. Nat. Phys. 10, 737–742 (2014). (10.1038/nphys3042) / Nat. Phys. by KH Liu (2014)
  37. Tersoff, J. Modeling solid-state chemistry—interatomic potentials for multicomponent systems. Phys. Rev. B 39, 5566–5568 (1989). (10.1103/PhysRevB.39.5566) / Phys. Rev. B by J Tersoff (1989)
  38. Stuart, S. J., Tutein, A. B. & Harrison, J. A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472 (2000). (10.1063/1.481208) / J. Chem. Phys. by SJ Stuart (2000)
  39. Lindsay, L. & Broido, D. A. Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B 81, 205441 (2010). (10.1103/PhysRevB.81.205441) / Phys. Rev. B by L Lindsay (2010)
  40. Kolmogorov, A. N. & Crespi, V. H. Registry-dependent interlayer potential for graphitic systems. Phys. Rev. B 71, 235415 (2005). (10.1103/PhysRevB.71.235415) / Phys. Rev. B by AN Kolmogorov (2005)
  41. Sevik, C., Kinaci, A., Haskins, J. B. & Çağın, T. Characterization of thermal transport in low-dimensional boron nitride nanostructures. Phys. Rev. B 84, 085409 (2011). (10.1103/PhysRevB.84.085409) / Phys. Rev. B by C Sevik (2011)
  42. Leven, I., Azuri, I., Kronik, L. & Hod, O. Inter-layer potential for hexagonal boron nitride. J. Chem. Phys. 140, 104106 (2014). (10.1063/1.4867272) / J. Chem. Phys. by I Leven (2014)
  43. Marom, N. et al. Stacking and registry effects in layered materials: the case of hexagonal boron nitride. Phys. Rev. Lett. 105, 046801 (2010). (10.1103/PhysRevLett.105.046801) / Phys. Rev. Lett. by N Marom (2010)
  44. Hod, O. Interlayer commensurability and superlubricity in rigid layered materials. Phys. Rev. B 86, 075444 (2012). (10.1103/PhysRevB.86.075444) / Phys. Rev. B by O Hod (2012)
  45. Hod, O. The registry index: a quantitative measure of materials’ interfacial commensurability. ChemPhysChem 14, 2376–2391 (2013). (10.1002/cphc.201300259) / ChemPhysChem by O Hod (2013)
Dates
Type When
Created 8 years, 11 months ago (Aug. 22, 2016, 1:23 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 7:46 p.m.)
Indexed 2 weeks, 1 day ago (Aug. 6, 2025, 8:32 a.m.)
Issued 8 years, 11 months ago (Aug. 22, 2016)
Published 8 years, 11 months ago (Aug. 22, 2016)
Published Online 8 years, 11 months ago (Aug. 22, 2016)
Published Print 8 years, 8 months ago (Dec. 1, 2016)
Funders 0

None

@article{Leven_2016, title={Multiwalled nanotube faceting unravelled}, volume={11}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2016.151}, DOI={10.1038/nnano.2016.151}, number={12}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Leven, Itai and Guerra, Roberto and Vanossi, Andrea and Tosatti, Erio and Hod, Oded}, year={2016}, month=aug, pages={1082–1086} }