Crossref
journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Authors
9
- Mervin Zhao (first)
- Yu Ye (additional)
- Yimo Han (additional)
- Yang Xia (additional)
- Hanyu Zhu (additional)
- Siqi Wang (additional)
- Yuan Wang (additional)
- David A. Muller (additional)
- Xiang Zhang (additional)
References
46
Referenced
240
-
Franklin, A. D. Nanomaterials in transistors: from high-performance to thin-film applications. Science 349, aab2750 (2015).
(
10.1126/science.aab2750
) / Science by AD Franklin (2015) -
Duan, X., Huang, Y., Cui, Y., Wang, J. & Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 (2001).
(
10.1038/35051047
) / Nature by X Duan (2001) -
Duan, X. et al. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425, 274–278 (2003).
(
10.1038/nature01996
) / Nature by X Duan (2003) -
Kuykendall, T. et al. Crystallographic alignment of high-density gallium nitride nanowire arrays. Nature Mater. 3, 524–528 (2004).
(
10.1038/nmat1177
) / Nature Mater. by T Kuykendall (2004) -
Kang, S. J. et al. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotech. 2, 230–236 (2007).
(
10.1038/nnano.2007.77
) / Nature Nanotech. by SJ Kang (2007) -
Ren, Z. et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105–1107 (1998).
(
10.1126/science.282.5391.1105
) / Science by Z Ren (1998) -
Yu, G., Cao, A. & Lieber, C. M. Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nature Nanotech. 2, 372–377 (2007).
(
10.1038/nnano.2007.150
) / Nature Nanotech. by G Yu (2007) -
Yang, P. Nanotechnology: wires on water. Nature 425, 243–244 (2003).
(
10.1038/425243a
) / Nature by P Yang (2003) -
Shulaker, M. M. et al. Carbon nanotube computer. Nature 501, 526–530 (2013).
(
10.1038/nature12502
) / Nature by MM Shulaker (2013) -
Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 5, 574–578 (2010).
(
10.1038/nnano.2010.132
) / Nature Nanotech. by S Bae (2010) -
Lee, J.-H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).
(
10.1126/science.1252268
) / Science by J-H Lee (2014) -
Schwierz, F. Graphene transistors. Nature Nanotech. 5, 487–496 (2010).
(
10.1038/nnano.2010.89
) / Nature Nanotech. by F Schwierz (2010) -
Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
(
10.1038/nature04233
) / Nature by KS Novoselov (2005) -
Fuhrer, M. S. & Hone, J. Measurement of mobility in dual-gated MoS2 transistors. Nature Nanotech. 8, 146–147 (2013).
(
10.1038/nnano.2013.30
) / Nature Nanotech. by MS Fuhrer (2013) -
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).
(
10.1038/nnano.2010.279
) / Nature Nanotech. by B Radisavljevic (2011) -
Lee, Y. H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).
(
10.1002/adma.201104798
) / Adv. Mater. by YH Lee (2012) -
Najmaei, S. et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nature Mater. 12, 754–759 (2013).
(
10.1038/nmat3673
) / Nature Mater. by S Najmaei (2013) -
van der Zande, A. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature Mater. 12, 554–561 (2013).
(
10.1038/nmat3633
) / Nature Mater. by A van der Zande (2013) -
Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).
(
10.1038/nature14417
) / Nature by K Kang (2015) -
Ling, X. et al. Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett. 14, 464–472 (2014).
(
10.1021/nl4033704
) / Nano Lett. by X Ling (2014) -
Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Mater. 13, 1135–1142 (2014).
(
10.1038/nmat4091
) / Nature Mater. by Y Gong (2014) -
Li, M. Y. et al. Epitaxial growth of a monolayer WSe2–MoS2 lateral p–n junction with an atomically sharp interface. Science 349, 524–528 (2015).
(
10.1126/science.aab4097
) / Science by MY Li (2015) -
Levendorf, M. P. et al. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488, 627–632 (2012).
(
10.1038/nature11408
) / Nature by MP Levendorf (2012) -
Liu, Z. et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nature Nanotech. 8, 119–124 (2013).
(
10.1038/nnano.2012.256
) / Nature Nanotech. by Z Liu (2013) -
Liu, Y. et al. Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett. 15, 3030–3034 (2015).
(
10.1021/nl504957p
) / Nano Lett. by Y Liu (2015) -
Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nature Nanotech. 10, 534–540 (2015).
(
10.1038/nnano.2015.70
) / Nature Nanotech. by X Cui (2015) -
Lee, G. H. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride–graphene heterostructures. ACS Nano 7, 7931–7936 (2013).
(
10.1021/nn402954e
) / ACS Nano by GH Lee (2013) -
Leong, W. S. et al. Low resistance metal contacts to MoS2 devices with nickel-etched-graphene electrodes. ACS Nano 9, 869–877 (2015).
(
10.1021/nn506567r
) / ACS Nano by WS Leong (2015) -
Yu, L. et al. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett. 14, 3055–3063 (2014).
(
10.1021/nl404795z
) / Nano Lett. by L Yu (2014) -
Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, G. & Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10, 751–758 (2010).
(
10.1021/nl904286r
) / Nano Lett. by MS Dresselhaus (2010) -
Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS2 . ACS Nano 4, 2695–2700 (2010).
(
10.1021/nn1003937
) / ACS Nano by C Lee (2010) -
Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).
(
10.1038/nature09718
) / Nature by PY Huang (2011) -
Gong, Y. et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 15, 6135–6141 (2015).
(
10.1021/acs.nanolett.5b02423
) / Nano Lett. by Y Gong (2015) -
Tsen, A. W. et al. Tailoring electrical transport across grain boundaries in polycrystalline graphene. Science 336, 1143–1146 (2012).
(
10.1126/science.1218948
) / Science by AW Tsen (2012) -
Tsen, A. W., Brown, L., Havener, R. W. & Park, J. Polycrystallinity and stacking in CVD graphene. Acc. Chem. Res. 46, 2286–2296 (2013).
(
10.1021/ar300190z
) / Acc. Chem. Res. by AW Tsen (2013) -
Shi, Y. et al. van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12, 2784–2791 (2012).
(
10.1021/nl204562j
) / Nano Lett. by Y Shi (2012) -
Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nature Mater. 13, 1128–1134 (2014).
(
10.1038/nmat4080
) / Nature Mater. by R Kappera (2014) -
Liu, H. et al. Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films. Nano Lett. 13, 2640–2646 (2013).
(
10.1021/nl400778q
) / Nano Lett. by H Liu (2013) -
Yuchen, D. et al. MoS2 field-effect transistors with graphene/metal heterocontacts. IEEE Electron. Device Lett. 35, 599–601 (2014).
(
10.1109/LED.2014.2313340
) / IEEE Electron. Device Lett. by D Yuchen (2014) -
Cheng, R. et al. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nature Commun. 5, 5143 (2014).
(
10.1038/ncomms6143
) / Nature Commun by R Cheng (2014) -
Duan, X. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nature Nanotech. 9, 1024–1030 (2014).
(
10.1038/nnano.2014.222
) / Nature Nanotech. by X Duan (2014) -
Tosun, M. et al. High-gain inverters based on WSe2 complementary field-effect transistors. ACS Nano 8, 4948–4953 (2014).
(
10.1021/nn5009929
) / ACS Nano by M Tosun (2014) -
Ling, X. et al. Parallel stitching of 2D materials. Adv. Mater. 28, 2322–2329 (2016).
(
10.1002/adma.201505070
) / Adv. Mater. by X Ling (2016) -
Muller, D. A. et al. Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073–1076 (2008).
(
10.1126/science.1148820
) / Science by DA Muller (2008) -
Yan, R. et al. Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment. Nano Lett. 15, 5791–5798 (2015).
(
10.1021/acs.nanolett.5b01792
) / Nano Lett. by R Yan (2015) -
Cueva, P., Hovden, R., Mundy, J. A., Xin, H. L. & Muller, D. A. Data processing for atomic resolution electron energy loss spectroscopy. Microsc. Microanal. 18, 667–675 (2012).
(
10.1017/S1431927612000244
) / Microsc. Microanal by P Cueva (2012)
Dates
Type | When |
---|---|
Created | 9 years, 1 month ago (July 12, 2016, 9:17 a.m.) |
Deposited | 2 years, 3 months ago (May 18, 2023, 7:46 p.m.) |
Indexed | 1 week, 5 days ago (Aug. 12, 2025, 6:05 p.m.) |
Issued | 9 years, 1 month ago (July 11, 2016) |
Published | 9 years, 1 month ago (July 11, 2016) |
Published Online | 9 years, 1 month ago (July 11, 2016) |
Published Print | 8 years, 9 months ago (Nov. 1, 2016) |
@article{Zhao_2016, title={Large-scale chemical assembly of atomically thin transistors and circuits}, volume={11}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2016.115}, DOI={10.1038/nnano.2016.115}, number={11}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Zhao, Mervin and Ye, Yu and Han, Yimo and Xia, Yang and Zhu, Hanyu and Wang, Siqi and Wang, Yuan and Muller, David A. and Zhang, Xiang}, year={2016}, month=jul, pages={954–959} }