Crossref journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Bibliography

Liu, G., Debnath, B., Pope, T. R., Salguero, T. T., Lake, R. K., & Balandin, A. A. (2016). A charge-density-wave oscillator based on an integrated tantalum disulfide–boron nitride–graphene device operating at room temperature. Nature Nanotechnology, 11(10), 845–850.

Authors 6
  1. Guanxiong Liu (first)
  2. Bishwajit Debnath (additional)
  3. Timothy R. Pope (additional)
  4. Tina T. Salguero (additional)
  5. Roger K. Lake (additional)
  6. Alexander A. Balandin (additional)
References 49 Referenced 194
  1. Grüner, G. Density Waves in Solids (Addison-Wesley, 1994). / Density Waves in Solids by G Grüner (1994)
  2. Rossnagel, K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys. Condens. Matter 23, 213001–213024 (2011). (10.1088/0953-8984/23/21/213001) / J. Phys. Condens. Matter by K Rossnagel (2011)
  3. Brown, S. & Grüner, G. Charge and spin density waves. Sci. Am. 270, 50–56 (1994). (10.1038/scientificamerican0494-50) / Sci. Am. by S Brown (1994)
  4. Thorne, R. E. Charge-density-wave conductors. Phys. Today 49, 42–47 (1996). (10.1063/1.881498) / Phys. Today by RE Thorne (1996)
  5. Porer, M. et al. Non-thermal separation of electronic and structural orders in a persisting charge density wave. Nature Mater. 13, 857–861 (2014). (10.1038/nmat4042) / Nature Mater. by M Porer (2014)
  6. Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Phys. Rev. Lett. 32, 882–885 (1974). (10.1103/PhysRevLett.32.882) / Phys. Rev. Lett. by JA Wilson (1974)
  7. Sipos, B. et al. From Mott state to superconductivity in 1T-TaS2 . Nature Mater. 7, 960–965 (2008). (10.1038/nmat2318) / Nature Mater. by B Sipos (2008)
  8. Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014). (10.1126/science.1241591) / Science by L Stojchevska (2014)
  9. Manzke, R., Buslaps, T., Pfalzgraf, B., Skibowski, M. & Anderson, O. On the phase transitions in 1T-TaS2 . Europhys. Lett. 8, 195–200 (1989). (10.1209/0295-5075/8/2/015) / Europhys. Lett. by R Manzke (1989)
  10. Yu, Y. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2 . Nature Nanotech. 10, 270–276 (2015). (10.1038/nnano.2014.323) / Nature Nanotech. by Y Yu (2015)
  11. Yoshida, M. et al. Controlling charge-density-wave states in nano-thick crystals of 1T-TaS2 . Sci. Rep. 4, 7302 (2014). (10.1038/srep07302) / Sci. Rep. by M Yoshida (2014)
  12. Joe, Y. I. et al. Emergence of charge density wave domain walls above the superconducting dome in 1T-TiSe2 . Nature Phys. 10, 421–425 (2014). (10.1038/nphys2935) / Nature Phys. by YI Joe (2014)
  13. Samnakay, R. et al. Zone-folded phonons and the commensurate−incommensurate charge-density-wave transition in 1T-TaSe2 thin films. Nano Lett. 15, 2965–2973 (2015). (10.1021/nl504811s) / Nano Lett. by R Samnakay (2015)
  14. Hollander, M. J. et al. Electrically driven reversible insulator–metal phase transition in 1T-TaS2 . Nano Lett. 15, 1861–1866 (2015). (10.1021/nl504662b) / Nano Lett. by MJ Hollander (2015)
  15. Xi, X. et al. Strongly enhanced charge-density-wave order in monolayer NbSe2 . Nature Nanotech. 10, 765–769 (2015). (10.1038/nnano.2015.143) / Nature Nanotech. by X Xi (2015)
  16. Tsen, A. W. et al. Structure and control of charge density waves in two-dimensional 1T-TaS2 . Proc. Natl Acad. Sci. USA 112, 15054–15059 (2016). (10.1073/pnas.1512092112) / Proc. Natl Acad. Sci. USA by AW Tsen (2016)
  17. Yoshida, M., Suzuki, R., Zhang, Y., Nakano, M. & Iwasa, Y. Memristive phase switching in two-dimensional 1T-TaS2 crystals. Sci. Adv. 1, e1500606 (2015). (10.1126/sciadv.1500606) / Sci. Adv. by M Yoshida (2015)
  18. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013). (10.1126/science.1244358) / Science by L Wang (2013)
  19. Doganov, R. A. et al. Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nature Commun. 6, 6647 (2014). (10.1038/ncomms7647) / Nature Commun. by RA Doganov (2014)
  20. Cao, Y.-F. et al. Transport and capacitance properties of charge density wave in few-layer 2H-TaS2 devices. Chinese Phys. Lett. 31, 077203–077206 (2014). (10.1088/0256-307X/31/7/077203) / Chinese Phys. Lett. by Y-F Cao (2014)
  21. Rhea, R. W. Oscillator Design and Computer Simulation (McGraw-Hill, 1997). / Oscillator Design and Computer Simulation by RW Rhea (1997)
  22. Razavi, B. A study of phase noise in CMOS oscillator. IEEE J. Solid State Circ. 31, 331–343 (1996). (10.1109/4.494195) / IEEE J. Solid State Circ. by B Razavi (1996)
  23. Stolyarov, M. A., Liu, G., Rumyantsev, S. L., Shur, M. & Balandin, A. A. Suppression of 1/f noise in near-ballistic h-BN-graphene-h-BN heterostructure field-effect transistors. Appl. Phys. Lett. 107, 023106 (2015). (10.1063/1.4926872) / Appl. Phys. Lett. by MA Stolyarov (2015)
  24. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 22, 666–669 (2004). (10.1126/science.1102896) / Science by KS Novoselov (2004)
  25. Lin, Y.-M. et al. Wafer-scale graphene integrated circuit. Science 332, 1294–1297 (2011). (10.1126/science.1204428) / Science by Y-M Lin (2011)
  26. Wu, Y. et al. High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472, 74–78 (2011). (10.1038/nature09979) / Nature by Y Wu (2011)
  27. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nature Mater. 10, 569–581 (2011). (10.1038/nmat3064) / Nature Mater. by AA Balandin (2011)
  28. Jo, I. et al. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Lett. 13, 550–554 (2013). (10.1021/nl304060g) / Nano Lett. by I Jo (2013)
  29. Perfetti, L. et al. Femtosecond dynamics of electronic states in the Mott insulator 1T-TaS2 by time resolved photoelectron spectroscopy. New J. Phys. 10, 053019 (2008). (10.1088/1367-2630/10/5/053019) / New J. Phys. by L Perfetti (2008)
  30. Kumar, S. et al. Local temperature redistribution and structural transition during joule-heating-driven conductance switching in VO2 . Adv. Mater. 25, 6128–6132 (2013). (10.1002/adma.201302046) / Adv. Mater. by S Kumar (2013)
  31. Zimmers, A. et al. Role of thermal heating on the voltage induced insulator-metal transition in VO2 . Phys. Rev. Lett. 110, 056601 (2013). (10.1103/PhysRevLett.110.056601) / Phys. Rev. Lett. by A Zimmers (2013)
  32. Brockman, J. S. et al. Subnanosecond incubation times for electric-field-induced metallization of a correlated electron oxide. Nature Nanotech. 9, 453–458 (2014). (10.1038/nnano.2014.71) / Nature Nanotech. by JS Brockman (2014)
  33. Horowitz, P. & Hill, W. The Art of Electronics (Cambridge Univ. Press, 1989). / The Art of Electronics by P Horowitz (1989)
  34. Hoppensteadt, F. C. & Izhikevich, E. M. Pattern recognition via synchronization in phase-locked loop neural networks. IEEE Trans. Neural Netw. 11, 734–738 (2000). (10.1109/72.846744) / IEEE Trans. Neural Netw. by FC Hoppensteadt (2000)
  35. Nikonov, D. E. et al. Coupled-oscillator associative memory array operation for pattern recognition. IEEE J. Explor. Solid State Comput. Dev. Circ. 1, 85–93 (2015). / IEEE J. Explor. Solid State Comput. Dev. Circ. by DE Nikonov (2015)
  36. Rahman, M. H. & Hamid, M. A. K. Solid-state oscillator using a VO2 polyconductor film as a circuit element. Int. J. Electron. 42, 65–72 (1977). (10.1080/00207217708900613) / Int. J. Electron. by MH Rahman (1977)
  37. Fisher, B. Voltage oscillations in switching VO2 needles. J. Appl. Phys. 49, 5339–5341 (1978). (10.1063/1.324401) / J. Appl. Phys. by B Fisher (1978)
  38. Lee, Y. K. et al. Metal-insulator transition-induced electrical oscillation in vanadium dioxide thin film. Appl. Phys. Lett. 92, 162903 (2008). (10.1063/1.2911745) / Appl. Phys. Lett. by YK Lee (2008)
  39. Leroy, J. et al. High-speed metal-insulator transition in vanadium dioxide films induced by an electrical pulsed voltage over nano-gap electrodes. Appl. Phys. Lett. 100, 213507 (2012). (10.1063/1.4721520) / Appl. Phys. Lett. by J Leroy (2012)
  40. Shukla, N. et al. Synchronized charge oscillations in correlated electron systems. Sci. Rep. 4, 4964 (2014). (10.1038/srep04964) / Sci. Rep. by N Shukla (2014)
  41. Joushaghani, A. et al. Voltage-controlled switching and thermal effects in VO2 nano-gap junctions. Appl. Phys. Lett. 104, 221904 (2014). (10.1063/1.4881155) / Appl. Phys. Lett. by A Joushaghani (2014)
  42. Wang, Y. et al. Electrical oscillation in Pt/VO2 bilayer strips. J. Appl. Phys. 117, 064502 (2015). (10.1063/1.4907906) / J. Appl. Phys. by Y Wang (2015)
  43. Yang, Z., Ko, C. & Ramanathan, S. Oxide electronics utilizing ultrafast metal-insulator transitions. Annu. Rev. Mater. Res. 41, 337–367 (2011). (10.1146/annurev-matsci-062910-100347) / Annu. Rev. Mater. Res. by Z Yang (2011)
  44. Pergament, A. et al. Vanadium dioxide: metal-insulator transition, electrical switching and oscillations. A review of state of the art and recent progress. Preprint at http://arxiv.org/abs/1601.06246 (2016).
  45. Cavalleri, A. et al. Evidence for a structurally-driven insulator-to-metal transition in VO2: a view from the ultrafast timescale. Phys. Rev. B 70, 161102(R) (2004). (10.1103/PhysRevB.70.161102) / Phys. Rev. B by A Cavalleri (2004)
  46. Petersen, J. C. et al. Clocking the melting transition of charge and lattice order in 1T−TaS2 with ultrafast extreme-ultraviolet angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 107, 177402 (2011). (10.1103/PhysRevLett.107.177402) / Phys. Rev. Lett. by JC Petersen (2011)
  47. Paik, H. et al. Transport properties of ultra-thin VO2 films on (001) TiO2 grown by reactive molecular-beam epitaxy. Appl. Phys. Lett. 107, 163101 (2015). (10.1063/1.4932123) / Appl. Phys. Lett. by H Paik (2015)
  48. Quackenbush, N. F. et al. Nature of the metal insulator transition in ultrathin epitaxial vanadium dioxide. Nano Lett. 13, 4857–4861 (2013). (10.1021/nl402716d) / Nano Lett. by NF Quackenbush (2013)
  49. Lieth, R. M. A. & Terhell, J. C. J. M. in Preparation and Crystal Growth of Materials With Layered Structures Vol. 1 (ed. Lieth, R. M. A.) 186 (Springer, 1977). (10.1007/978-94-017-2750-1) / Preparation and Crystal Growth of Materials With Layered Structures by RMA Lieth (1977)
Dates
Type When
Created 9 years, 2 months ago (July 1, 2016, 7:45 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 7:46 p.m.)
Indexed 1 week, 6 days ago (Aug. 23, 2025, 9:17 p.m.)
Issued 9 years, 2 months ago (July 4, 2016)
Published 9 years, 2 months ago (July 4, 2016)
Published Online 9 years, 2 months ago (July 4, 2016)
Published Print 8 years, 11 months ago (Oct. 1, 2016)
Funders 0

None

@article{Liu_2016, title={A charge-density-wave oscillator based on an integrated tantalum disulfide–boron nitride–graphene device operating at room temperature}, volume={11}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2016.108}, DOI={10.1038/nnano.2016.108}, number={10}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Liu, Guanxiong and Debnath, Bishwajit and Pope, Timothy R. and Salguero, Tina T. and Lake, Roger K. and Balandin, Alexander A.}, year={2016}, month=jul, pages={845–850} }