Crossref journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Bibliography

Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R., & Vamivakas, A. N. (2015). Voltage-controlled quantum light from an atomically thin semiconductor. Nature Nanotechnology, 10(6), 507–511.

Authors 5
  1. Chitraleema Chakraborty (first)
  2. Laura Kinnischtzke (additional)
  3. Kenneth M. Goodfellow (additional)
  4. Ryan Beams (additional)
  5. A. Nick Vamivakas (additional)
References 33 Referenced 563
  1. Yu, P. Y. & Cardona, M. Fundamentals of Semiconductors: Physics and Materials Properties 4th edn (Springer, 2010). (10.1007/978-3-642-00710-1) / Fundamentals of Semiconductors: Physics and Materials Properties by PY Yu (2010)
  2. Imamoglu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999). (10.1103/PhysRevLett.83.4204) / Phys. Rev. Lett. by A Imamoglu (1999)
  3. Hanson, R. & Awschalom, D. D. Coherent manipulation of single spins in semiconductors. Nature 453, 1043–1049 (2008). (10.1038/nature07129) / Nature by R Hanson (2008)
  4. Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006). (10.1038/nature04855) / Nature by G Konstantatos (2006)
  5. Vamivakas, A. N., Zhao, Y., Fält, S., Badolato, A., Taylor, J. M. & Atature, M. Nanoscale optical electrometer. Phys. Rev. Lett. 107, 166802 (2011). (10.1103/PhysRevLett.107.166802) / Phys. Rev. Lett. by AN Vamivakas (2011)
  6. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). (10.1126/science.1102896) / Science by KS Novoselov (2004)
  7. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005). (10.1038/nature04233) / Nature by KS Novoselov (2005)
  8. Zhang, Y., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005). (10.1038/nature04235) / Nature by Y Zhang (2005)
  9. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 662–712 (2012). / Nature Nanotech. by QH Wang (2012)
  10. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013). (10.1038/nature12385) / Nature by AK Geim (2013)
  11. Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nature Nanotech. 9, 257–261 (2014). (10.1038/nnano.2014.14) / Nature Nanotech. by A Pospischil (2014)
  12. Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nature Nanotech. 9, 676–681 (2014). (10.1038/nnano.2014.150) / Nature Nanotech. by C-H Lee (2014)
  13. Goodfellow, K. M., Beams, R., Chakraborty, C., Novotny, L. & Vamivakas, A. N. Integrated nanophotonics based on nanowire plasmons and atomically thin material. Optica 1, 149–152 (2014). (10.1364/OPTICA.1.000149) / Optica by KM Goodfellow (2014)
  14. Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nature Nanotech. 9, 262–267 (2014). (10.1038/nnano.2014.25) / Nature Nanotech by BWH Baugher (2014)
  15. Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nature Nanotech. 9, 268–272 (2014). (10.1038/nnano.2014.26) / Nature Nanotech by JS Ross (2014)
  16. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012). (10.1038/nnano.2012.95) / Nature Nanotech. by H Zeng (2012)
  17. Mak, K., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012). (10.1038/nnano.2012.96) / Nature Nanotech. by K Mak (2012)
  18. Lundeberg, M. B. & Folk, J. A. Harnessing chirality for valleytronics. Science 346, 422–423 (2014). (10.1126/science.1260989) / Science by MB Lundeberg (2014)
  19. Kormanyos, A., Zolyomi, V., Drummond, N. D. & Burkard, G. Spin–orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides. Phys. Rev. X 4, 011034 (2014). / Phys. Rev. X by A Kormanyos (2014)
  20. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010). (10.1103/PhysRevLett.105.136805) / Phys. Rev. Lett. by KF Mak (2010)
  21. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 2010, 1271–1275 (2010). (10.1021/nl903868w) / Nano Lett by A Splendiani (2010)
  22. Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2 . Nature Nanotech. 8, 634–638 (2013). (10.1038/nnano.2013.151) / Nature Nanotech by AM Jones (2013)
  23. He, K. et al. Tightly bound excitons in monolayer WSe2 . Phys. Rev. Lett. 113, 026803 (2014). (10.1103/PhysRevLett.113.026803) / Phys. Rev. Lett. by K He (2014)
  24. Tongay, S. et al. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Sci. Rep. 3, 2657 (2013). (10.1038/srep02657) / Sci. Rep. by S Tongay (2013)
  25. Wang, G. et al. Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2 . Phys. Rev. B 90, 075413 (2014). (10.1103/PhysRevB.90.075413) / Phys. Rev. B by G Wang (2014)
  26. Vamivakas, A. N. & Atature, M. Contemporary physics, photons and (artificial) atoms: an overview of optical spectroscopy techniques on quantum dots. Contemp. Phys. 51, 17–36 (2010). (10.1080/00107510903298198) / Contemp. Phys. by AN Vamivakas (2010)
  27. Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 65, 195315 (2002). (10.1103/PhysRevB.65.195315) / Phys. Rev. B by M Bayer (2002)
  28. Vamivakas, A. N. et al. Observation of spin-dependent quantum jumps via quantum-dot resonance fluorescence. Nature 467, 297–300 (2010). (10.1038/nature09359) / Nature by AN Vamivakas (2010)
  29. Beams, R. et al. Nanoscale fluorescence lifetime imaging of an optical antenna with a single diamond NV center. Nano Lett. 13, 3807–3811 (2013). (10.1021/nl401791v) / Nano Lett by R Beams (2013)
  30. Muschik, C. A. et al. Harnessing vacuum forces for quantum sensing of graphene motion. Phys. Rev. Lett. 112, 223601 (2014). (10.1103/PhysRevLett.112.223601) / Phys. Rev. Lett. by CA Muschik (2014)
  31. Srivastava, A. et al. Optically active quantum dots in monolayer WSe2 . Nature Nanotech. http://dx.doi.org/10.1038/nnano.2015.60 (2015). (10.1038/nnano.2015.60)
  32. Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nature Nanotech. http://dx.doi.org/10.1038/nnano.2015.67 (2015). (10.1038/nnano.2015.67)
  33. He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nature Nanotech. http://dx.doi.org/10.1038/nnano.2015.75 (2015). (10.1038/nnano.2015.75)
Dates
Type When
Created 10 years, 3 months ago (April 30, 2015, 10 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 7:45 p.m.)
Indexed 8 hours, 47 minutes ago (Aug. 21, 2025, 12:51 p.m.)
Issued 10 years, 3 months ago (May 4, 2015)
Published 10 years, 3 months ago (May 4, 2015)
Published Online 10 years, 3 months ago (May 4, 2015)
Published Print 10 years, 2 months ago (June 1, 2015)
Funders 0

None

@article{Chakraborty_2015, title={Voltage-controlled quantum light from an atomically thin semiconductor}, volume={10}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2015.79}, DOI={10.1038/nnano.2015.79}, number={6}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Chakraborty, Chitraleema and Kinnischtzke, Laura and Goodfellow, Kenneth M. and Beams, Ryan and Vamivakas, A. Nick}, year={2015}, month=may, pages={507–511} }