Crossref
journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
References
149
Referenced
2,116
-
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
(
10.1126/science.1102896
) / Science by KS Novoselov (2004) -
Antolini, E. Graphene as a new carbon support for low-temperature fuel cell catalysts. Appl. Catal. B 123, 52–68 (2012).
(
10.1016/j.apcatb.2012.04.022
) / Appl. Catal. B by E Antolini (2012) -
Hur, S. H. & Park, J. N. Graphene and its application in fuel cell catalysis: a review. Asia Pac. J. Chem. Eng. 8, 218–233 (2013).
(
10.1002/apj.1676
) / Asia Pac. J. Chem. Eng. by SH Hur (2013) -
An, X. Q. & Yu, J. C. Graphene-based photocatalytic composites. RSC Adv. 1, 1426–1434 (2011).
(
10.1039/c1ra00382h
) / RSC Adv. by XQ An (2011) -
Machado, B. F. & Serp, P. Graphene-based materials for catalysis. Catal. Sci. Technol. 2, 54–75 (2012).
(
10.1039/C1CY00361E
) / Catal. Sci. Technol. by BF Machado (2012) -
Deng, D. et al. Size effect of graphene on electrocatalytic activation of oxygen. Chem. Commun. 47, 10016–10018 (2011).
(
10.1039/c1cc13033a
) / Chem. Commun. by D Deng (2011) -
Su, C. L. & Loh, K. P. Carbocatalysts: graphene oxide and its derivatives. Acc. Chem. Res. 46, 2275–2285 (2013).
(
10.1021/ar300118v
) / Acc. Chem. Res. by CL Su (2013) -
Qu, L. T., Liu, Y., Baek, J.-B. & Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4, 1321–1326 (2010).
(
10.1021/nn901850u
) / ACS Nano by LT Qu (2010) -
Yu, L., Pan, X., Cao, X., Hu, P. & Bao, X. Oxygen reduction reaction mechanism on nitrogen-doped graphene: a density functional theory study. J. Catal. 282, 183–190 (2011).
(
10.1016/j.jcat.2011.06.015
) / J. Catal. by L Yu (2011) -
Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).
(
10.1073/pnas.0502848102
) / Proc. Natl Acad. Sci. USA by KS Novoselov (2005) -
Novoselov, K. S. Nobel Lecture. Graphene: materials in the flatland. Rev. Mod. Phys. 83, 837–849 (2011).
(
10.1103/RevModPhys.83.837
) / Rev. Mod. Phys. by KS Novoselov (2011) -
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
(
10.1038/nature12385
) / Nature by AK Geim (2013) -
Deng, D. H. et al. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem. Int. Ed. 52, 371–375 (2013).
(
10.1002/anie.201204958
) / Angew. Chem. Int. Ed. by DH Deng (2013) -
Deng, J. et al. Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy Environ. Sci. 7, 1919–1923 (2014).
(
10.1039/C4EE00370E
) / Energy Environ. Sci. by J Deng (2014) -
Deng, J., Ren, P., Deng, D. & Bao, X. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew. Chem. Int. Ed. 54, 2100–2104 (2015).
(
10.1002/anie.201409524
) / Angew. Chem. Int. Ed. by J Deng (2015) -
Zheng, X. J. et al. Podlike N-doped carbon nanotubes encapsulating FeNi alloy nanoparticles: high-performance counter electrode materials for dye-sensitized solar cells. Angew. Chem. Int. Ed. 53, 7023–7027 (2014).
(
10.1002/anie.201400388
) / Angew. Chem. Int. Ed. by XJ Zheng (2014) -
Mu, R. T. et al. Visualizing chemical reactions confined under graphene. Angew. Chem. Int. Ed. 51, 4856–4859 (2012).
(
10.1002/anie.201200413
) / Angew. Chem. Int. Ed. by RT Mu (2012) -
Yao, Y. X. et al. Graphene cover-promoted metal-catalyzed reactions. Proc. Natl Acad. Sci. USA 111, 17023–17028 (2014).
(
10.1073/pnas.1416368111
) / Proc. Natl Acad. Sci. USA by YX Yao (2014) -
Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).
(
10.1038/nmat1849
) / Nature Mater. by AK Geim (2007) -
Chae, H. K. et al. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523–527 (2004).
(
10.1038/nature02311
) / Nature by HK Chae (2004) -
Frank, I. W., Tanenbaum, D. M., Van der Zande, A. M. & McEuen, P. L. Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol. A 25, 2558–2561 (2007).
(
10.1116/1.2789446
) / J. Vac. Sci. Technol. A by IW Frank (2007) -
Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).
(
10.1021/nl0731872
) / Nano Lett. by AA Balandin (2008) -
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).
(
10.1103/RevModPhys.81.109
) / Rev. Mod. Phys. by AH Castro Neto (2009) -
Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996).
(
10.1103/PhysRevB.54.17954
) / Phys. Rev. B by K Nakada (1996) -
Enoki, T., Kobayashi, Y. & Fukui, K.-I. Electronic structures of graphene edges and nanographene. Int. Rev. Phys. Chem. 26, 609–645 (2007).
(
10.1080/01442350701611991
) / Int. Rev. Phys. Chem. by T Enoki (2007) -
Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nature Mater. 6, 916–916 (2007).
(
10.1038/nmat2056
) / Nature Mater. by SY Zhou (2007) -
Girit, C. O. et al. Graphene at the edge: stability and dynamics. Science 323, 1705–1708 (2009).
(
10.1126/science.1166999
) / Science by CO Girit (2009) -
Banhart, F., Kotakoski, J. & Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 5, 26–41 (2011).
(
10.1021/nn102598m
) / ACS Nano by F Banhart (2011) -
Li, L., Reich, S. & Robertson, J. Defect energies of graphite: density-functional calculations. Phys. Rev. B 72, 184109 (2005).
(
10.1103/PhysRevB.72.184109
) / Phys. Rev. B by L Li (2005) -
Zhong, J. H. et al. Quantitative correlation between defect density and heterogeneous electron transfer rate of single layer graphene. J. Am. Chem. Soc. 136, 16609–16617 (2014).
(
10.1021/ja508965w
) / J. Am. Chem. Soc. by JH Zhong (2014) -
Chae, S. J. et al. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv. Mater. 21, 2328–2333 (2009).
(
10.1002/adma.200803016
) / Adv. Mater. by SJ Chae (2009) -
Li, Z. J., Cheng, Z. G., Wang, R., Li, Q. & Fang, Y. Spontaneous formation of nanostructures in graphene. Nano Lett. 9, 3599–3602 (2009).
(
10.1021/nl901815u
) / Nano Lett. by ZJ Li (2009) -
Wei, D. C. et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752–1758 (2009).
(
10.1021/nl803279t
) / Nano Lett. by DC Wei (2009) -
Deng, D. et al. Toward N-doped graphene via solvothermal synthesis. Chem. Mater. 23, 1188–1193 (2011).
(
10.1021/cm102666r
) / Chem. Mater. by D Deng (2011) -
Panchokarla, L. S. et al. Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 21, 4726–4730 (2009).
(
10.1002/adma.200901285
) / Adv. Mater. by LS Panchokarla (2009) -
Dai, J. Y., Yuan, J. M. & Giannozzi, P. Gas adsorption on graphene doped with B, N, Al, and S: a theoretical study. Appl. Phys. Lett. 95, 232105 (2009).
(
10.1063/1.3272008
) / Appl. Phys. Lett. by JY Dai (2009) -
Liu, Z. W. et al. Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Angew. Chem. Int. Ed. 50, 3257–3261 (2011).
(
10.1002/anie.201006768
) / Angew. Chem. Int. Ed. by ZW Liu (2011) -
Jiao, Y., Zheng, Y., Jaroniec, M. & Qiao, S. Z. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. J. Am. Chem. Soc. 136, 4394–4403 (2014).
(
10.1021/ja500432h
) / J. Am. Chem. Soc. by Y Jiao (2014) -
Yang, Z. et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6, 205–211 (2012).
(
10.1021/nn203393d
) / ACS Nano by Z Yang (2012) -
Yang, S. B. et al. Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv. Funct. Mater. 22, 3634–3640 (2012).
(
10.1002/adfm.201200186
) / Adv. Funct. Mater. by SB Yang (2012) -
Cretu, O. et al. Migration and localization of metal atoms on strained graphene. Phys. Rev. Lett. 105, 196102 (2010).
(
10.1103/PhysRevLett.105.196102
) / Phys. Rev. Lett. by O Cretu (2010) -
Wang, H. et al. Doping monolayer graphene with single atom substitutions. Nano Lett. 12, 141–144 (2012).
(
10.1021/nl2031629
) / Nano Lett. by H Wang (2012) - Jiong, Z. et al. Free-standing single-atom-thick iron membranes suspended in graphene pores. Science 243, 1228–1232 (2014). / Science by Z Jiong (2014)
-
Hummers, W. S. & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958).
(
10.1021/ja01539a017
) / J. Am. Chem. Soc. by WS Hummers (1958) -
Liu, F. et al. Sulfated graphene as an efficient solid catalyst for acid-catalyzed liquid reactions. J. Mater. Chem. 22, 5495–5502 (2012).
(
10.1039/c2jm16608a
) / J. Mater. Chem. by F Liu (2012) -
Yan, J. A., Xian, L. D. & Chou, M. Y. Structural and electronic properties of oxidized graphene. Phys. Rev. Lett. 103, 086802 (2009).
(
10.1103/PhysRevLett.103.086802
) / Phys. Rev. Lett. by JA Yan (2009) -
Sofo, J. O., Chaudhari, A. S. & Barber, G. D. Graphane: a two-dimensional hydrocarbon. Phys. Rev. B 75, 153401 (2007).
(
10.1103/PhysRevB.75.153401
) / Phys. Rev. B by JO Sofo (2007) -
Poh, H. L., Simek, P., Sofer, Z. & Pumera, M. Halogenation of graphene with chlorine, bromine, or iodine by exfoliation in a halogen atmosphere. Chem. Eur. J. 19, 2655–2662 (2013).
(
10.1002/chem.201202972
) / Chem. Eur. J. by HL Poh (2013) -
Wu, M., Cao, C. & Jiang, J. Z. Light non-metallic atom (B, N, O and F)-doped graphene: a first-principles study. Nanotechnology 21, 505202 (2010).
(
10.1088/0957-4484/21/50/505202
) / Nanotechnology by M Wu (2010) -
Wang, H., Sun, K., Tao, F., Stacchiola, D. J. & Hu, Y. H. 3D honeycomb-like structured graphene and its high efficiency as a counter-electrode catalyst for dye-sensitized solar cells. Angew. Chem. Int. Ed. 52, 9210–9214 (2013).
(
10.1002/anie.201303497
) / Angew. Chem. Int. Ed. by H Wang (2013) -
Jiang, D. E., Sumpter, B. G. & Dai, S. Unique chemical reactivity of a graphene nanoribbon's zigzag edge. J. Chem. Phys. 126, 134701 (2007).
(
10.1063/1.2715558
) / J. Chem. Phys. by DE Jiang (2007) -
Sheng, Z.-H., Gao, H.-L., Bao, W.-J., Wang, F.-B. & Xia, X.-H. Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J. Mater. Chem. 22, 390–395 (2012).
(
10.1039/C1JM14694G
) / J. Mater. Chem. by Z-H Sheng (2012) -
Gao, Y. J. et al. Nitrogen-doped sp2-hybridized carbon as a superior catalyst for selective oxidation. Angew. Chem. Int. Ed. 52, 2109–2113 (2013).
(
10.1002/anie.201207918
) / Angew. Chem. Int. Ed. by YJ Gao (2013) -
Chen, S., Duan, J. J., Jaroniec, M. & Qiao, S. Z. Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction. Adv. Mater. 26, 2925–2930 (2014).
(
10.1002/adma.201305608
) / Adv. Mater. by S Chen (2014) -
Yoo, E., Nakamura, J. & Zhou, H. S. N-doped graphene nanosheets for Li–air fuel cells under acidic conditions. Energy Environ. Sci. 5, 6928–6932 (2012).
(
10.1039/c2ee02830a
) / Energy Environ. Sci. by E Yoo (2012) -
Wu, G. et al. Nitrogen doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O2 battery cathodes. ACS Nano 6, 9764–9776 (2012).
(
10.1021/nn303275d
) / ACS Nano by G Wu (2012) - Yu, L. Density Functional Theory Studies on Modulating the Electronic Structures of sp2 Hybridized Carbon Materials for Oxygen Activation PhD thesis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (2012). / Density Functional Theory Studies on Modulating the Electronic Structures of sp2 Hybridized Carbon Materials for Oxygen Activation by L Yu (2012)
-
Fellinger, T. P., Hasche, F., Strasser, P. & Antonietti, M. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. J. Am. Chem. Soc. 134, 4072–4075 (2012).
(
10.1021/ja300038p
) / J. Am. Chem. Soc. by TP Fellinger (2012) -
Amirfakhri, S. J., Binny, D., Meunier, J. L. & Berk, D. Investigation of hydrogen peroxide reduction reaction on graphene and nitrogen doped graphene nanoflakes in neutral solution. J. Power Sources 257, 356–363 (2014).
(
10.1016/j.jpowsour.2014.01.114
) / J. Power Sources by SJ Amirfakhri (2014) -
Long, J. et al. Nitrogen-doped graphene nanosheets as metal-free catalysts for aerobic selective oxidation of benzylic alcohols. ACS Catal. 2, 622–631 (2012).
(
10.1021/cs3000396
) / ACS Catal. by J Long (2012) -
Zhang, J. T., Zhao, Z. H., Xia, Z. H. & Dai, L. M. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nature Nanotech. 10, 444–452 (2015).
(
10.1038/nnano.2015.48
) / Nature Nanotech. by JT Zhang (2015) -
Lu, Y.-H., Zhou, M., Zhang, C. & Feng, Y.-P. Metal-embedded graphene: a possible catalyst with high activity. J. Phys. Chem. C 113, 20156–20160 (2009).
(
10.1021/jp908829m
) / J. Phys. Chem. C by Y-H Lu (2009) -
Deng, D. H. et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci. Adv. 1, e1500462 (2015).
(
10.1126/sciadv.1500462
) / Sci. Adv. by DH Deng (2015) -
Boehm, H. P., Clauss, A., Fischer, G. & Hofmann, U. in Fifth Conference on Carbon 73–80 (Pergamon, 1962).
(
10.1016/B978-0-08-009707-7.50013-3
) / Fifth Conference on Carbon by HP Boehm (1962) -
Dreyer, D. R., Jia, H.-P. & Bielawski, C. W. Graphene oxide: a convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew. Chem. Int. Ed. 49, 6813–6816 (2010).
(
10.1002/anie.201002160
) / Angew. Chem. Int. Ed. by DR Dreyer (2010) -
Dreyer, D. R., Park, S., Bielawski, C. W. & Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010).
(
10.1039/B917103G
) / Chem. Soc. Rev. by DR Dreyer (2010) -
Gao, Y., Ma, D., Wang, C., Guan, J. & Bao, X. Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. Chem. Commun. 47, 2432–2434 (2011).
(
10.1039/C0CC04420B
) / Chem. Commun. by Y Gao (2011) -
Satheesh, D., Shanmugam, S. & Ravichandran, K. Synthesis and characterization of nitro-functionalized electrochemically exfoliated graphene. Mater. Lett. 137, 153–155 (2014).
(
10.1016/j.matlet.2014.08.147
) / Mater. Lett. by D Satheesh (2014) -
Castro Neto, A. H. & Novoselov, K. Two-dimensional crystals: beyond graphene. Mater. Express 1, 10–17 (2011).
(
10.1166/mex.2011.1002
) / Mater. Express by AH Castro Neto (2011) - Castro Neto, A. H. & Novoselov, K. New directions in science and technology: two-dimensional crystals. Rep. Prog. Phys. 74, 8 (2011). / Rep. Prog. Phys. by AH Castro Neto (2011)
-
Thomas, A. et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 18, 4893–4908 (2008).
(
10.1039/b800274f
) / J. Mater. Chem. by A Thomas (2008) -
Wang, X. et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Mater. 8, 76–80 (2009).
(
10.1038/nmat2317
) / Nature Mater. by X Wang (2009) -
Goettmann, F., Thomas, A. & Antonietti, M. Metal-free activation CO2 by mesoporous graphitic carbon nitride. Angew. Chem. Int. Ed. 46, 2717–2720 (2007).
(
10.1002/anie.200603478
) / Angew. Chem. Int. Ed. by F Goettmann (2007) -
Yang, S., Feng, X., Wang, X. & Muellen, K. Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions. Angew. Chem. Int. Ed. 50, 5339–5343 (2011).
(
10.1002/anie.201100170
) / Angew. Chem. Int. Ed. by S Yang (2011) -
Zheng, Y. et al. Hydrogen evolution by a metal-free electrocatalyst. Nature Commun. 5, 3783 (2014).
(
10.1038/ncomms4783
) / Nature Commun. by Y Zheng (2014) -
Goettmann, F., Fischer, A., Antonietti, M. & Thomas, A. Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel–Crafts reaction of benzene. Angew. Chem. Int. Ed. 45, 4467–4471 (2006).
(
10.1002/anie.200600412
) / Angew. Chem. Int. Ed. by F Goettmann (2006) -
Jiao, Y., Zheng, Y., Jaroniec, M. T. & Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015).
(
10.1039/C4CS00470A
) / Chem. Soc. Rev. by Y Jiao (2015) -
Zheng, Y., Jiao, Y., Jaroniec, M. & Qiao, S. Z. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem. Int. Ed. 54, 52–65 (2015).
(
10.1002/anie.201407031
) / Angew. Chem. Int. Ed. by Y Zheng (2015) -
Ma, T. Y., Dai, S., Jaroniec, M. & Qiao, S. Z. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem. Int. Ed. 53, 7281–7285 (2014).
(
10.1002/anie.201403946
) / Angew. Chem. Int. Ed. by TY Ma (2014) -
Li, Y. J., Xu, L., Liu, H. B. & Li, Y. L. Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem. Soc. Rev. 43, 2572–2586 (2014).
(
10.1039/c3cs60388a
) / Chem. Soc. Rev. by YJ Li (2014) -
Liu, R. J. et al. Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions. Nanoscale 6, 11336–11343 (2014).
(
10.1039/C4NR03185G
) / Nanoscale by RJ Liu (2014) -
Wu, P., Du, P., Zhang, H. & Cai, C. X. Graphdiyne as a metal-free catalyst for low-temperature CO oxidation. Phys. Chem. Chem. Phys. 16, 5640–5648 (2014).
(
10.1039/C3CP55121K
) / Phys. Chem. Chem. Phys. by P Wu (2014) -
Yu, H. Z., Du, A. J., Song, Y. & Searles, D. J. Graphyne and graphdiyne: versatile catalysts for dehydrogenation of light metal complex hydrides. J. Phys. Chem. C 117, 21643–21650 (2013).
(
10.1021/jp406081v
) / J. Phys. Chem. C by HZ Yu (2013) -
Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
(
10.1103/PhysRevLett.105.136805
) / Phys. Rev. Lett. by KF Mak (2010) -
Wang, H. T., Yuan, H. T., Hong, S. S., Li, Y. B. & Cui, Y. Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev. 44, 2664–2680 (2015).
(
10.1039/C4CS00287C
) / Chem. Soc. Rev. by HT Wang (2015) -
Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).
(
10.1126/science.1141483
) / Science by TF Jaramillo (2007) -
Wang, D. Y. et al. Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets — carbon nanotubes for hydrogen evolution reaction. J. Am. Chem. Soc. 137, 1587–1592 (2015).
(
10.1021/ja511572q
) / J. Am. Chem. Soc. by DY Wang (2015) -
Xie, J. et al. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 135, 17881–17888 (2013).
(
10.1021/ja408329q
) / J. Am. Chem. Soc. by J Xie (2013) -
Deng, J. et al. High-performance hydrogen evolution electrocatalysis by layer-controlled MoS2 nanosheets. RSC Adv. 4, 34733–34738 (2014).
(
10.1039/C4RA05614K
) / RSC Adv. by J Deng (2014) -
Yu, Y. F. et al. Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 14, 553–558 (2014).
(
10.1021/nl403620g
) / Nano Lett. by YF Yu (2014) -
Deng, J. et al. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 8, 1594–1601 (2015).
(
10.1039/C5EE00751H
) / Energy Environ. Sci. by J Deng (2015) -
Sun, Y. F. et al. Freestanding tin disulfide single-layers realizing efficient visible-light water splitting. Angew. Chem. Int. Ed. 51, 8727–8731 (2012).
(
10.1002/anie.201204675
) / Angew. Chem. Int. Ed. by YF Sun (2012) -
Sun, Y. F. et al. All-surface-atomic-metal chalcogenide sheets for high-efficiency visible-light photoelectrochemical water splitting. Adv. Energy Mater. 4, http://dx.doi.org/10.1002/aenm.201300611 (2014).
(
10.1002/aenm.201300611
) -
Lei, F. C. et al. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 136, 6826–6829 (2014).
(
10.1021/ja501866r
) / J. Am. Chem. Soc. by FC Lei (2014) -
Liu, Y. W. et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 136, 15670–15675 (2014).
(
10.1021/ja5085157
) / J. Am. Chem. Soc. by YW Liu (2014) -
Zhou, M. et al. C-oriented and {010} facets exposed BiVO4 nanowall films: template-free fabrication and their enhanced photoelectrochemical properties. Chem. Asian J. 5, 2515–2523 (2010).
(
10.1002/asia.201000452
) / Chem. Asian J. by M Zhou (2010) -
Sun, Y. F. et al. Pits confined in ultrathin cerium(IV) oxide for studying catalytic centers in carbon monoxide oxidation. Nature Commun. 4, 2899 (2013).
(
10.1038/ncomms3899
) / Nature Commun. by YF Sun (2013) -
Cao, Y. et al. Quality heterostructures from two dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett. 15, 4914–4921 (2015).
(
10.1021/acs.nanolett.5b00648
) / Nano Lett. by Y Cao (2015) -
Huang, X. Q. et al. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nature Nanotech. 6, 28–32 (2011).
(
10.1038/nnano.2010.235
) / Nature Nanotech. by XQ Huang (2011) -
Dai, Y., Liu, S. J. & Zheng, N. F. C2H2 treatment as a facile method to boost the catalysis of Pd nanoparticulate catalysts. J. Am. Chem. Soc. 136, 5583–5586 (2014).
(
10.1021/ja501530n
) / J. Am. Chem. Soc. by Y Dai (2014) -
Duan, H. H. et al. Ultrathin rhodium nanosheets. Nature Commun. 5, 3093 (2014).
(
10.1038/ncomms4093
) / Nature Commun. by HH Duan (2014) -
Jia, Y. Y. et al. Unique excavated rhombic dodecahedral PtCu3 alloy nanocrystals constructed with ultrathin nanosheets of high-energy {110} facets. J. Am. Chem. Soc. 136, 3748–3751 (2014).
(
10.1021/ja413209q
) / J. Am. Chem. Soc. by YY Jia (2014) -
Li, X. H. & Antonietti, M. Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: functional Mott–Schottky heterojunctions for catalysis. Chem. Soc. Rev. 42, 6593–6604 (2013).
(
10.1039/c3cs60067j
) / Chem. Soc. Rev. by XH Li (2013) -
Chen, X. et al. Visualizing electronic interactions between iron and carbon by X-ray chemical imaging and spectroscopy. Chem. Sci. 6, 3262–3267 (2015).
(
10.1039/C5SC00353A
) / Chem. Sci. by X Chen (2015) -
Deng, J. et al. Highly active reduction of oxygen on a FeCo alloy catalyst encapsulated in pod-like carbon nanotubes with fewer walls. J. Mater. Chem. A 1, 14868–14873 (2013).
(
10.1039/c3ta13759g
) / J. Mater. Chem. A by J Deng (2013) -
Hu, Y. et al. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts. Angew. Chem. Int. Ed. 53, 3675–3679 (2014).
(
10.1002/anie.201400358
) / Angew. Chem. Int. Ed. by Y Hu (2014) -
Zou, X. C. et al. Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew. Chem. Int. Ed. 53, 4372–4376 (2014).
(
10.1002/anie.201311111
) / Angew. Chem. Int. Ed. by XC Zou (2014) -
Fu, T. et al. Acid-resistant catalysis without use of noble metals: carbon nitride with underlying nickel. ACS Catal. 4, 2536–2543 (2014).
(
10.1021/cs500523k
) / ACS Catal. by T Fu (2014) -
Uosaki, K. et al. Boron nitride nanosheet on gold as an electrocatalyst for oxygen reduction reaction: theoretical suggestion and experimental proof. J. Am. Chem. Soc. 136, 6542–6545 (2014).
(
10.1021/ja500393g
) / J. Am. Chem. Soc. by K Uosaki (2014) -
Lyalin, A., Nakayama, A., Uosaki, K. & Taketsugu, T. Functionalization of monolayer h-BN by a metal support for the oxygen reduction reaction. J. Phys. Chem. C 117, 21359–21370 (2013).
(
10.1021/jp406751n
) / J. Phys. Chem. C by A Lyalin (2013) -
Britnell, L. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12, 1707–1710 (2012).
(
10.1021/nl3002205
) / Nano Lett. by L Britnell (2012) -
Chen, W., Santos, E. J. G., Zhu, W. G., Kaxiras, E. & Zhang, Z. Y. Tuning the electronic and chemical properties of monolayer MoS2 adsorbed on transition metal substrates. Nano Lett. 13, 509–514 (2013).
(
10.1021/nl303909f
) / Nano Lett. by W Chen (2013) -
Cui, X. J., Ren, P. J., Deng, D. H., Deng, J. & Bao, X. H. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci. 9, 123–129 (2016).
(
10.1039/C5EE03316K
) / Energy Environ. Sci. by XJ Cui (2016) -
Riedl, C., Coletti, C., Iwasaki, T., Zakharov, A. A. & Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 103, 246804 (2009).
(
10.1103/PhysRevLett.103.246804
) / Phys. Rev. Lett. by C Riedl (2009) -
Huang, L. et al. Intercalation of metal islands and films at the interface of epitaxially grown graphene and Ru(0001) surfaces. Appl. Phys. Lett. 99, 163107 (2011).
(
10.1063/1.3653241
) / Appl. Phys. Lett. by L Huang (2011) -
Petrovic, M. et al. The mechanism of caesium intercalation of graphene. Nature Commun. 4, 2772 (2013).
(
10.1038/ncomms3772
) / Nature Commun. by M Petrovic (2013) -
Zhang, Y. H. et al. Hexagonal boron nitride cover on Pt(111): a new route to tune molecule–metal interaction and metal-catalyzed reactions. Nano Lett. 15, 3616–3623 (2015).
(
10.1021/acs.nanolett.5b01205
) / Nano Lett. by YH Zhang (2015) -
Gao, L. B. et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nature Commun. 3, 699 (2012).
(
10.1038/ncomms1702
) / Nature Commun. by LB Gao (2012) -
Zhang, Y. H. et al. Enhanced reactivity of graphene wrinkles and their function as nanosized gas inlets for reactions under graphene. Phys. Chem. Chem. Phys. 15, 19042–19048 (2013).
(
10.1039/c3cp52115j
) / Phys. Chem. Chem. Phys. by YH Zhang (2013) -
Jin, L. et al. Surface chemistry of CO on Ru(0001) under the confinement of graphene cover. J. Phys. Chem. C 118, 12391–12398 (2014).
(
10.1021/jp5034855
) / J. Phys. Chem. C by L Jin (2014) -
Fu, Q. & Bao, X. Catalysis on a metal surface with a graphitic cover. Chin. J. Catal. 36, 517–519 (2015).
(
10.1016/S1872-2067(15)60828-2
) / Chin. J. Catal. by Q Fu (2015) -
Sachs, B. et al. Doping mechanisms in graphene–MoS2 hybrids. Appl. Phys. Lett. 103, 251607 (2013).
(
10.1063/1.4852615
) / Appl. Phys. Lett. by B Sachs (2013) -
Lee, C. H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nature Nanotech. 9, 676–681 (2014).
(
10.1038/nnano.2014.150
) / Nature Nanotech. by CH Lee (2014) -
Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nature Commun. 6, 7242 (2015).
(
10.1038/ncomms7242
) / Nature Commun. by P Rivera (2015) -
Li, Y. et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011).
(
10.1021/ja201269b
) / J. Am. Chem. Soc. by Y Li (2011) -
Yang, J. et al. Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution. Angew. Chem. Int. Ed. 52, 13751–13754 (2013).
(
10.1002/anie.201307475
) / Angew. Chem. Int. Ed. by J Yang (2013) -
Cai, X. et al. Tuning the surface charge of 2D oxide nanosheets and the bulk-scale production of superlatticelike composites. J. Am. Chem. Soc. 137, 2844–2847 (2015).
(
10.1021/jacs.5b00317
) / J. Am. Chem. Soc. by X Cai (2015) -
Gao, M. R. et al. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nature Commun. 6, 5982 (2015).
(
10.1038/ncomms6982
) / Nature Commun. by MR Gao (2015) -
Wang, Y. et al. What molecular assembly can learn from catalytic chemistry. Chem. Soc. Rev. 43, 399–411 (2014).
(
10.1039/C3CS60212E
) / Chem. Soc. Rev. by Y Wang (2014) -
Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nature Nanotech. 2, 687–691 (2007).
(
10.1038/nnano.2007.346
) / Nature Nanotech. by L Grill (2007) -
Chen, X. Q., Deng, D. H., Pan, X. L., Hu, Y. F. & Bao, X. H. N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins. Chem. Commun. 51, 217–220 (2015).
(
10.1039/C4CC06600F
) / Chem. Commun. by XQ Chen (2015) -
Ren, W. C. & Cheng, H. M. The global growth of graphene. Nature Nanotech. 9, 726–730 (2014).
(
10.1038/nnano.2014.229
) / Nature Nanotech. by WC Ren (2014) -
Son, J. S. et al. Large-scale soft colloidal template synthesis of 1.4 nm thick CdSe nanosheets. Angew. Chem. Int. Ed. 48, 6861–6864 (2009).
(
10.1002/anie.200902791
) / Angew. Chem. Int. Ed. by JS Son (2009) -
Si, P. Z. et al. Synthesis and structure of multi-layered WS2(CoS), MOS2(Mo) nanocapsules and single-layered WS2(W) nanoparticles. J. Mater. Sci. 40, 4287–4291 (2005).
(
10.1007/s10853-005-2797-7
) / J. Mater. Sci. by PZ Si (2005) -
Norimatsu, W. & Kusunoki, M. Transitional structures of the interface between graphene and 6H-SiC (0001). Chem. Phys. Lett. 468, 52–56 (2009).
(
10.1016/j.cplett.2008.11.095
) / Chem. Phys. Lett. by W Norimatsu (2009) -
Deng, D. et al. Freestanding graphene by thermal splitting of silicon carbide granules. Adv. Mater. 22, 2168–2171 (2010).
(
10.1002/adma.200903519
) / Adv. Mater. by D Deng (2010) -
Presser, V., Heon, M. & Gogotsi, Y. Carbide-derived carbons from porous networks to nanotubes and graphene. Adv. Funct. Mater. 21, 810–833 (2011).
(
10.1002/adfm.201002094
) / Adv. Funct. Mater. by V Presser (2011) -
Li, X. Y. et al. Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene. Nature Commun. 5, 3688 (2014).
(
10.1038/ncomms4688
) / Nature Commun. by XY Li (2014) -
Zhao, Y., Nakamura, R., Kamiya, K., Nakanishi, S. & Hashimoto, K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nature Commun. 4, 2390 (2013).
(
10.1038/ncomms3390
) / Nature Commun. by Y Zhao (2013) -
Yeh, T. F., Teng, C. Y., Chen, S. J. & Teng, H. S. Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination. Adv. Mater. 26, 3297–3303 (2014).
(
10.1002/adma.201305299
) / Adv. Mater. by TF Yeh (2014) -
Sim, U. et al. N-doped monolayer graphene catalyst on silicon photocathode for hydrogen production. Energy Environ. Sci. 6, 3658–3664 (2013).
(
10.1039/c3ee42106f
) / Energy Environ. Sci. by U Sim (2013) -
Xue, Y. H. et al. Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized solar cells. Angew. Chem. Int. Ed. 51, 12124–12127 (2012).
(
10.1002/anie.201207277
) / Angew. Chem. Int. Ed. by YH Xue (2012) -
Liu, J. et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970–974 (2015).
(
10.1126/science.aaa3145
) / Science by J Liu (2015) -
Chen, X. F., Zhang, J. S., Fu, X. Z., Antonietti, M. & Wang, X. C. Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. J. Am. Chem. Soc. 131, 11658–11659 (2009).
(
10.1021/ja903923s
) / J. Am. Chem. Soc. by XF Chen (2009) -
Su, F. Z. et al. mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light. J. Am. Chem. Soc. 132, 16299–16301 (2010).
(
10.1021/ja102866p
) / J. Am. Chem. Soc. by FZ Su (2010) -
Zhu, J. J., Wei, Y. C., Chen, W. K., Zhao, Z. & Thomas, A. Graphitic carbon nitride as a metal-free catalyst for NO decomposition. Chem. Commun. 46, 6965–6967 (2010).
(
10.1039/c0cc01432j
) / Chem. Commun. by JJ Zhu (2010) -
Santos, V. P. et al. Mechanistic insight into the synthesis of higher alcohols from syngas: the role of K promotion on MoS2 catalysts. ACS Catal. 3, 1634–1637 (2013).
(
10.1021/cs4003518
) / ACS Catal. by VP Santos (2013) -
Huang, M. & Cho, K. Density functional theory study of CO hydrogenation on a MoS2 surface. J. Phys. Chem. C 113, 5238–5243 (2009).
(
10.1021/jp807705y
) / J. Phys. Chem. C by M Huang (2009) -
Erickson, K. et al. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 22, 4467–4472 (2010).
(
10.1002/adma.201000732
) / Adv. Mater. by K Erickson (2010)
Dates
Type | When |
---|---|
Created | 9 years, 5 months ago (March 3, 2016, 12:42 a.m.) |
Deposited | 1 year, 2 months ago (June 14, 2024, 2:58 p.m.) |
Indexed | 4 hours, 42 minutes ago (Aug. 23, 2025, 9:30 p.m.) |
Issued | 9 years, 5 months ago (March 1, 2016) |
Published | 9 years, 5 months ago (March 1, 2016) |
Published Online | 9 years, 5 months ago (March 3, 2016) |
Published Print | 9 years, 5 months ago (March 1, 2016) |
@article{Deng_2016, title={Catalysis with two-dimensional materials and their heterostructures}, volume={11}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2015.340}, DOI={10.1038/nnano.2015.340}, number={3}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Deng, Dehui and Novoselov, K. S. and Fu, Qiang and Zheng, Nanfeng and Tian, Zhongqun and Bao, Xinhe}, year={2016}, month=mar, pages={218–230} }