Crossref
journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
References
126
Referenced
823
-
Slonczewski, J. S. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).
(
10.1016/0304-8853(96)00062-5
) / J. Magn. Magn. Mater. by JS Slonczewski (1996) -
Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).
(
10.1103/PhysRevB.54.9353
) / Phys. Rev. B by L Berger (1996) -
Ikeda, S. et al. Recent progress of perpendicular anisotropy magnetic tunnel junctions for nonvolatile VLSI. SPIN 2, 1240003 (2012).
(
10.1142/S2010324712400036
) / SPIN by S Ikeda (2012) -
Khvalkovskiy, A. V. et al. Basic principles of STT-MRAM cell operation in memory arrays. J. Phys. D 46, 074001 (2013).
(
10.1088/0022-3727/46/7/074001
) / J. Phys. D by AV Khvalkovskiy (2013) -
Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).
(
10.1103/RevModPhys.84.119
) / Rev. Mod. Phys. by G Catalan (2012) -
Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nature Phys. 5, 656–659 (2009).
(
10.1038/nphys1362
) / Nature Phys. by A Chernyshov (2009) -
Endo, M., Matsukura, F. & Ohno, H. Current induced effective magnetic field and magnetization reversal in uniaxial anisotropy (Ga, Mn)As. Appl. Phys. Lett. 97, 222501 (2010).
(
10.1063/1.3520514
) / Appl. Phys. Lett. by M Endo (2010) -
Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).
(
10.1126/science.1218197
) / Science by L Liu (2012) -
Ikeda, S. et al. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junctions. Nature Mater. 9, 721–724 (2010).
(
10.1038/nmat2804
) / Nature Mater. by S Ikeda (2010) -
Sato, H. et al. Comprehensive study of CoFeB–MgO magnetic tunnel junction characteristics with single- and double-interface scaling down to 1X nm. Tech. Dig. Int. Electron Devices Meeting 60–63 (2013).
(
10.1109/IEDM.2013.6724550
) -
Novosad, V. et al. Novel magnetostrictive memory device. J. Appl. Phys. 87, 6400–6402 (2000).
(
10.1063/1.372719
) / J. Appl. Phys. by V Novosad (2000) -
Iwasaki, Y. Stress-driven magnetization reversal in magnetoresistive films with in-plane magnetocystalline anisotropy. J. Magn. Magn. Mater. 240, 395–397 (2002).
(
10.1016/S0304-8853(01)00841-1
) / J. Magn. Magn. Mater. by Y Iwasaki (2002) -
Overby, M., Chernyshov, A., Rokhinson, L. P., Liu, X. & Furdyna, J. K. GaMnAs-based hybrid multiferroic memory devices. Appl. Phys. Lett. 92, 192501 (2008).
(
10.1063/1.2917481
) / Appl. Phys. Lett. by M Overby (2008) -
Bihler, C. et al. Ga1–xMnxAs/piezoelectric actuator hybrids: A model for magnetoelastic magnetization manipulation. Phys. Rev. B 78, 045203 (2008).
(
10.1103/PhysRevB.78.045203
) / Phys. Rev. B by C Bihler (2008) -
Rushforth, A. W. et al. Voltage control of magnetocrystalline anisotropy in ferromagnetic-semiconductor-piezoelectric hybrid structures. Phys. Rev. B 78, 085314 (2008).
(
10.1103/PhysRevB.78.085314
) / Phys. Rev. B by AW Rushforth (2008) -
Lei, N., Park, S., Lecoeur, P., Ravelosona, D. & Chappert, C. Magnetization reversal assisted by the inverse piezoelectric effect in Co-Fe-B/ferroelectric multilayers. Phys. Rev. B 84, 012404 (2011).
(
10.1103/PhysRevB.84.012404
) / Phys. Rev. B by N Lei (2011) -
Methfessel, S. Potential application of magnetic rare earth compounds. IEEE Trans. Magn. 1, 144–155 (1965).
(
10.1109/TMAG.1965.1062951
) / IEEE Trans. Magn. by S Methfessel (1965) -
Ascher, E., Rider, H., Schimid, H. & Stössel, H. Some properties of ferromagnetoelectric nickel-iodine boracite, Ni3B7O13I. J. Appl. Phys. 37, 1404–1405 (1966).
(
10.1063/1.1708493
) / J. Appl. Phys. by E Ascher (1966) -
Awschalom, D. D. & Kawakami, R. K. Teaching magnets new tricks. Nature 408, 923–924 (2000).
(
10.1038/35050194
) / Nature by DD Awschalom (2000) -
Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000). This was the first report of voltage-induced magnetization phase transitions in magnetic materials.
(
10.1038/35050040
) / Nature by H Ohno (2000) -
Sawicki, M. et al. Experimental probing of the interplay between ferromagnetism and localization in (Ga, Mn)As. Nature Phys. 6, 22–25 (2010).
(
10.1038/nphys1455
) / Nature Phys. by M Sawicki (2010) -
Dietl, T., Ohno, H., Matsukura, F., Cibert, J. & Ferrand, D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000).
(
10.1126/science.287.5455.1019
) / Science by T Dietl (2000) -
Dietl, T., Ohno, H. & Matsukura, F. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys. Rev. B 63, 195295 (2001).
(
10.1103/PhysRevB.63.195205
) / Phys. Rev. B by T Dietl (2001) -
Nishitani, Y. et al. Curie temperature versus hole concentration in field-effect structures of Ga1–xMnxAs. Phys. Rev. B 81, 045208 (2010).
(
10.1103/PhysRevB.81.045208
) / Phys. Rev. B by Y Nishitani (2010) -
Chang, H. W., Akita, S., Matsukura, F. & Ohno, H. Hole concentration dependence of the Curie temperature of (Ga,Mn)Sb in a field-effect structure. Appl. Phys. Lett. 103, 142402 (2013).
(
10.1063/1.4823592
) / Appl. Phys. Lett. by HW Chang (2013) -
Boukari, H. et al. Light and electric field control of ferromagnetism in magnetic quantum structure. Phys. Rev. Lett. 88, 207204 (2002).
(
10.1103/PhysRevLett.88.207204
) / Phys. Rev. Lett. by H Boukari (2002) -
Lee, H.–J., Helgren, E. & Hellman, F. Gate-controlled magnetic properties of the magnetic semiconductor (Zn,Co)O. Appl. Phys. Lett. 94, 212106 (2009).
(
10.1063/1.3147856
) / Appl. Phys. Lett. by H–J Lee (2009) -
Li, L. et al. Magnetism of Co-doped ZnO epitaxially grown on a ZnO substrate. Phys. Rev. B 85, 174430 (2012).
(
10.1103/PhysRevB.85.174430
) / Phys. Rev. B by L Li (2012) -
Nepal, N. et al. Electric field control of room temperature ferromagnetism in III–V dilute magnetic semiconductors. Appl. Phys. Lett. 94, 132505 (2009).
(
10.1063/1.3110963
) / Appl. Phys. Lett. by N Nepal (2009) -
Park, J. D. et al. A group-IV ferromagnetic semiconductors MnxGe1–x . Science 295, 651–654 (2002).
(
10.1126/science.1066348
) / Science by JD Park (2002) -
Yamada, Y. et al. Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide. Science 332, 1065–1067 (2011).
(
10.1126/science.1202152
) / Science by Y Yamada (2011) -
Checkelsky, J. G., Ye, J., Onose, Y., Iwasa, Y. & Tokura, Y. Dirac-Fermion-mediated ferromagnetism in a topological insulator. Nature Phys. 8, 729–733 (2012).
(
10.1038/nphys2388
) / Nature Phys. by JG Checkelsky (2012) -
Xufeng, K. et al. Manipulating surface-related ferromagnetism in modulation-doped topological insulators. Nano Lett. 13, 4587–4593 (2013).
(
10.1021/nl4020638
) / Nano Lett. by K Xufeng (2013) -
Chiba, D. et al. Anomalous Hall effect in field-effect structures of (Ga,Mn)As. Phys. Rev. Lett. 104, 106601 (2010).
(
10.1103/PhysRevLett.104.106601
) / Phys. Rev. Lett. by D Chiba (2010) -
Chiba, D., Matsukura, F. & Ohno, H. Electrically defined ferromagnetic nanodots. Nano Lett. 10, 4505–4508 (2010).
(
10.1021/nl102379h
) / Nano Lett. by D Chiba (2010) -
Chiba, D., Yamanouchi, F., Matsukura, F. & Ohno, H. Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301, 943–945 (2003). This was the first report of electric-field control of coercivity and electric-field-assisted magnetization reversal in magnetic materials.
(
10.1126/science.1086608
) / Science by D Chiba (2003) -
Chiba, D. et al. Magnetization vector manipulation by electric fields. Nature 455, 515–518 (2008). This was the first report of voltage control of magnetic anisotropy in magnetic materials.
(
10.1038/nature07318
) / Nature by D Chiba (2008) -
Stöhr, J., Siegmann, H. C., Kashuna, A. & Gamble, S. J. Magnetization switching without charge or spin currents. Appl. Phys. Lett. 94, 072504 (2009).
(
10.1063/1.3081421
) / Appl. Phys. Lett. by J Stöhr (2009) -
Balestriere, P., Devolder, T., Wunderlich, J. & Chappert, C. Electric field induced anisotropy modification in (Ga,Mn)As: A strategy for the precessional switching of the magnetization. Appl. Phys. Lett. 96, 142504 (2010).
(
10.1063/1.3379016
) / Appl. Phys. Lett. by P Balestriere (2010) -
Chiba, D., Nakatani, Y., Matsukura, F. & Ohno, H. Simulation of magnetization switching by electric-field manipulation of magnetic anisotropy. Appl. Phys. Lett. 96, 192596 (2010).
(
10.1063/1.3428959
) / Appl. Phys. Lett. by D Chiba (2010) -
Chiba, D., Ono, T., Matsukura, F. & Ohno, H. Electric field control of thermal stability and magnetization switching in (Ga,Mn)As. Appl. Phys. Lett. 103, 142418 (2013).
(
10.1063/1.4821778
) / Appl. Phys. Lett. by D Chiba (2013) -
Yamanouchi, M., Chiba, D., Matsukura, F. & Ohno, H. Current-assisted domain wall motion in ferromagnetic semiconductors. Jpn. J. Appl. Phys. 45, 3854–3859 (2006).
(
10.1143/JJAP.45.3854
) / Jpn. J. Appl. Phys. by M Yamanouchi (2006) -
Weisheit, M. et al. Electric-field induced modification of magnetism in thin-film ferromagnets. Science 315, 349–351 (2007). This was the first report of voltage control of coercivity in ferromagnetic metals.
(
10.1126/science.1136629
) / Science by M Weisheit (2007) -
Awschalom, D. D. & Flatté, M. E. Challenges for semiconductor spintronics. Nature Phys. 3, 153–159 (2007).
(
10.1038/nphys551
) / Nature Phys. by DD Awschalom (2007) -
Duan, C.-G. et al. Surface magnetoelectric effect in ferromagnetic metal films. Phys. Rev. Lett. 101, 137201 (2008).
(
10.1103/PhysRevLett.101.137201
) / Phys. Rev. Lett. by C-G Duan (2008) -
Maruyama, T. et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nature Nanotech. 4, 158–161 (2009).
(
10.1038/nnano.2008.406
) / Nature Nanotech. by T Maruyama (2009) -
Endo, M., Kanai, S., Ikeda, S., Matsukura, F. & Ohno, H. Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/Co40Fe40B20/Ta structures. Appl. Phys. Lett. 96, 212503 (2010).
(
10.1063/1.3429592
) / Appl. Phys. Lett. by M Endo (2010) - Nakamura, K. et al. Giant modification of the magnetocrystalline anisotropy in transition-metal monolayers by an external electric field. Phys. Rev. Lett. 102, 287201 (2009). / Phys. Rev. Lett. by K Nakamura (2009)
-
Nakamura, K., Akiyama, T., Ito, T., Weinert, M. & Freeman, A. J. Role of an interfacial FeO layer in the electric-field-driven switching of magnetocrystalline anisotropy at the Fe/MgO interface. Phys. Rev. B 81, 220409(R) (2010).
(
10.1103/PhysRevB.81.220409
) / Phys. Rev. B by K Nakamura (2010) -
Bonell, F. et al. Reversible change in the oxidation state and magnetic circular dichroism of Fe driven by an electric field at the FeCo/MgO interface. Appl. Phys. Lett. 102, 152401 (2013).
(
10.1063/1.4802030
) / Appl. Phys. Lett. by F Bonell (2013) -
Wang, W.-G., Li, M., Hageman, S. & Chien, C. L. Electric-field-assisted switching in magnetic tunnel junctions. Nature Mater. 11, 64–68 (2012).
(
10.1038/nmat3171
) / Nature Mater. by W-G Wang (2012) -
Shiota, Y. et al. Voltage-assisted magnetization switching in ultrathin Fe80Co20 alloy layers. Appl. Phys. Express 2, 063001 (2009).
(
10.1143/APEX.2.063001
) / Appl. Phys. Express by Y Shiota (2009) -
Shiota, Y. et al. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nature Mater. 11, 39–43 (2012). This was the first report of voltage-induced magnetization switching in a ferromagnetic metal.
(
10.1038/nmat3172
) / Nature Mater. by Y Shiota (2012) -
Kanai, S. et al. Electric field-induced magnetization reversal in perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Appl. Phys. Lett. 101, 122403 (2012).
(
10.1063/1.4753816
) / Appl. Phys. Lett. by S Kanai (2012) -
Kanai, S. et al. In-plane magnetic field dependence of electric field-induced magnetization switching. Appl. Phys. Lett. 103, 074208 (2013).
(
10.1063/1.4818676
) / Appl. Phys. Lett. by S Kanai (2013) -
Kanai, S. et al. Magnetization switching in a CoFeB/MgO magnetic tunnel junction by combining spin-transfer torque and electric-field effect. Appl. Phys. Lett. 104, 212406 (2014).
(
10.1063/1.4880720
) / Appl. Phys. Lett. by S Kanai (2014) -
Nozaki, T. et al. Electric-field-induced ferromagnetic resonance excitation in an ultrathin ferromagnetic metal layer. Nature Phys. 8, 491–496 (2012).
(
10.1038/nphys2298
) / Nature Phys. by T Nozaki (2012) -
Zhu, J. et al. Voltage-induced ferromagnetic resonance in magnetic tunnel junctions. Phys. Rev. Lett. 108, 197203 (2012).
(
10.1103/PhysRevLett.108.197203
) / Phys. Rev. Lett. by J Zhu (2012) -
Mizunuma, K. et al. Size dependence of magnetic properties of nanoscale CoFeB–MgO magnetic tunnel junctions with perpendicular magnetic easy axis observed by ferromagnetic resonance. Appl. Phys. Express 6, 063002 (2013).
(
10.7567/APEX.6.063002
) / Appl. Phys. Express by K Mizunuma (2013) -
Chiba, D. et al. Electrical control of the ferromagnetic phase transition in cobalt at room temperature. Nature Mater. 10, 853–856 (2011).
(
10.1038/nmat3130
) / Nature Mater. by D Chiba (2011) -
Gerhard, L. et al. Magnetoelectric coupling at metal surfaces. Nature Nanotech. 5, 792–797 (2010).
(
10.1038/nnano.2010.214
) / Nature Nanotech. by L Gerhard (2010) -
Schellekens, A. J., van den Brink, A., Franken, J. H., Swagten, H. J. M. & Koopmans, B. Nature Commun. 3, 847 (2012).
(
10.1038/ncomms1848
) / Nature Commun. by AJ Schellekens (2012) -
Chiba, D. et al. Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization. Nature Commun. 3, 888 (2012).
(
10.1038/ncomms1888
) / Nature Commun. by D Chiba (2012) -
Bauer, U., Emori, S. & Beach, S. D. Voltage-controlled domain wall traps in ferromagnetic nanowires. Nature Nanotech. 8, 411–416 (2013).
(
10.1038/nnano.2013.96
) / Nature Nanotech. by U Bauer (2013) -
Tokura, Y. Multiferroics – toward strong coupling between magnetization and polarization in a solid. J. Magn. Magn. Mater. 310, 1145–1150 (2007).
(
10.1016/j.jmmm.2006.11.198
) / J. Magn. Magn. Mater. by Y Tokura (2007) -
Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003).
(
10.1126/science.1080615
) / Science by J Wang (2003) -
Zhao, T. et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nature Mater. 5, 823–829 (2006).
(
10.1038/nmat1731
) / Nature Mater. by T Zhao (2006) -
Chu, Y.-H. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nature Mater. 7, 478–482 (2008); corrigendum 7, 678 (2008).
(
10.1038/nmat2184
) / Nature Mater. by Y-H Chu (2008) -
Wu, S. et al. Reversible electric control of exchange bias in a multiferroic field-effect device. Nature Mater. 9, 756–761 (2010).
(
10.1038/nmat2803
) / Nature Mater. by S Wu (2010) -
Heron, J. T. et al. Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys. Rev. Lett. 107, 217202 (2011). This was the first report of electric field-induced magnetization reversal in a ferromagnet–multiferrioics heterostructure at room temperature.
(
10.1103/PhysRevLett.107.217202
) / Phys. Rev. Lett. by JT Heron (2011) -
Ederer, C. & Spaldin, N. A. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401(R) (2005).
(
10.1103/PhysRevB.71.060401
) / Phys. Rev. B by C Ederer (2005) -
Ratcliff, W. II et al. Electric-field-controlled antiferromagnetic domains in epitaxial BiFeO3 thin films probed by neutron diffraction. Phys. Rev. B 87, 140405(R) (2013).
(
10.1103/PhysRevB.87.140405
) / Phys. Rev. B by W Ratcliff II (2013) -
Borisov, P., Hochstrat, A., Chen, X., Kleemann, W. & Binek, Ch. Magnetoelectric switching of exchange bias. Phys. Rev. Lett. 94, 117203 (2005). This was the first report of magnetoelectric switching of exchange bias in a ferromagnet–multiferrioics heterostructure.
(
10.1103/PhysRevLett.94.117203
) / Phys. Rev. Lett. by P Borisov (2005) -
He, X. et al. Robust isothermal electric control of exchange bias at room temperature. Nature Mater. 9, 579–585 (2010).
(
10.1038/nmat2785
) / Nature Mater. by X He (2010) -
Echtenkamp, W. & Binek, Ch. Electric control of exchange bias training. Phys. Rev. Lett. 111, 187204 (2013).
(
10.1103/PhysRevLett.111.187204
) / Phys. Rev. Lett. by W Echtenkamp (2013) -
Laukhin, V. et al. Electric-field control of exchange bias in multiferroic epitaxial heterostructures. Phys. Rev. Lett. 97, 227201 (2006).
(
10.1103/PhysRevLett.97.227201
) / Phys. Rev. Lett. by V Laukhin (2006) -
Skumryev, V. et al. Magnetization reversal by electric-field decoupling of magnetic and ferroelectric domain walls in multiferroic-based heterostructures. Phys. Rev. Lett. 106, 057206 (2011).
(
10.1103/PhysRevLett.106.057206
) / Phys. Rev. Lett. by V Skumryev (2011) -
Nogues, J. & Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999).
(
10.1016/S0304-8853(98)00266-2
) / J. Magn. Magn. Mater. by J Nogues (1999) -
Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005).
(
10.1088/0022-3727/38/8/R01
) / J. Phys. D by M Fiebig (2005) -
Wu, N. et al. Imaging and control of surface magnetization domains in a magnetoelectric antiferromagnet. Phys. Rev. Lett. 106, 087202 (2011).
(
10.1103/PhysRevLett.106.087202
) / Phys. Rev. Lett. by N Wu (2011) -
Fiebig, M., Lottermoser, Th., Fröhlich, D., Goltsev, A. V. & Pisarev, R. V. Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002).
(
10.1038/nature01077
) / Nature by M Fiebig (2002) -
Arima, T. Spin-driven ferroelectricity and magneto-electric effects in frustrated magnetic systems. J. Phys. Soc. Jpn 80, 052001 (2011).
(
10.1143/JPSJ.80.052001
) / J. Phys. Soc. Jpn by T Arima (2011) -
Okumura, K., Haruki, K., Ishihara, T., Hirose, S. & Kimura, T. Multilevel magnetization switching by electric field in c-axis oriented polycrystalline Z-type hexaferrite. Appl. Phys. Lett. 103, 032906 (2013).
(
10.1063/1.4816268
) / Appl. Phys. Lett. by K Okumura (2013) -
Murakawa, H., Onose, Y. & Tokura, Y. Electric-field switching of a magnetic propagation vector in a helimagnet. Phys. Rev. Lett. 103, 147201 (2009).
(
10.1103/PhysRevLett.103.147201
) / Phys. Rev. Lett. by H Murakawa (2009) -
Yamasaki, Y. et al. Electrical control of spin helicity in a magnetic ferroelectric. Phys. Rev. Lett. 98, 147204 (2007).
(
10.1103/PhysRevLett.98.147204
) / Phys. Rev. Lett. by Y Yamasaki (2007) -
Lottermoser, T. et al. Magnetic phase control by an electric field effect. Nature 430, 541–544 (2004).
(
10.1038/nature02728
) / Nature by T Lottermoser (2004) -
Saito, M., Ishikawa, K., Konno, S., Taniguchi, K. & Arima, T. Periodic rotation of magnetization in a non-centrosymmetric soft magnet induced by an electric field. Nature Mater. 8, 634–638 (2009).
(
10.1038/nmat2492
) / Nature Mater. by M Saito (2009) -
Chun, S. H. et al. Electric field control of non-volatile four-state magnetization at room temperature. Phys. Rev. Lett. 108, 177201 (2012).
(
10.1103/PhysRevLett.108.177201
) / Phys. Rev. Lett. by SH Chun (2012) -
Hearmon, A. J. et al. Electric field control of the magnetic chiralities in ferroaxial multiferroic RbFe(MoO4)2 . Phys. Rev. Lett. 108, 237201 (2012).
(
10.1103/PhysRevLett.108.237201
) / Phys. Rev. Lett. by AJ Hearmon (2012) -
Ghidini, M. et al. Non-volatile electrically driven repeatable magnetization reversal with no applied magnetic field. Nature Commun. 4, 1453 (2012).
(
10.1038/ncomms2398
) / Nature Commun. by M Ghidini (2012) -
Tokunaga, Y., Iguchi, S., Arima, T. & Tokura, Y. Magnetic-field-induced ferroelectric state in DyFeO3 . Phys. Rev. Lett. 101, 097205 (2008).
(
10.1103/PhysRevLett.101.097205
) / Phys. Rev. Lett. by Y Tokunaga (2008) -
Tokunaga, Y. et al. Composite domain walls in a multiferroic perovskite ferrite. Nature Mater. 8, 558–562 (2009).
(
10.1038/nmat2469
) / Nature Mater. by Y Tokunaga (2009) -
Tokunaga, Y., Taguchi, Y., Arima, T. & Tokura, Y. Electric-field-induced generation and reversal of ferromagnetic moment in ferrites. Nature Phys. 8, 838–844 (2012). This was the first report of electric field-induced magnetization reversal in single-component multiferroics.
(
10.1038/nphys2405
) / Nature Phys. by Y Tokunaga (2012) -
Katsura, H., Nagaosa, N. & Balatsky, A. V. Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95, 057205 (2005).
(
10.1103/PhysRevLett.95.057205
) / Phys. Rev. Lett. by H Katsura (2005) -
Sergienko, I. A. & Dagotto, E. Role of the Dzyaloshinskii–Moriya interaction in multiferroic perovskites. Phys. Rev. B 73, 094434 (2006).
(
10.1103/PhysRevB.73.094434
) / Phys. Rev. B by IA Sergienko (2006) -
Tokura, Y., Seki, S. & Nagaosa, N. Multiferroics of spin origin. Rep. Prog. Phys. 77, 076501 (2014).
(
10.1088/0034-4885/77/7/076501
) / Rep. Prog. Phys. by Y Tokura (2014) -
Takahashi, Y., Shimano, R., Kaneko, Y., Murakawa, H. & Tokura, Y. Magnetoelectric resonance with electromagnons in a perovskite helimagnet. Nature Phys. 8, 121–125 (2012). This was the first report of the observation of the optical magnetoelectric effect mediated by electromagnons in perovskite.
(
10.1038/nphys2161
) / Nature Phys. by Y Takahashi (2012) -
Takahashi, Y., Yamasaki, Y. & Tokura, Y. Terahertz magnetoelectric resonance enhanced by mutual coupling of electromagnons, Phys. Rev. Lett. 111, 037204 (2013).
(
10.1103/PhysRevLett.111.037204
) / Phys. Rev. Lett. by Y Takahashi (2013) -
Katsura, H., Balatsky, A. V. & Nagaosa, N. Dynamical magnetoelectric coupling in helical magnets. Phys. Rev. Lett. 98, 027203 (2007).
(
10.1103/PhysRevLett.98.027203
) / Phys. Rev. Lett. by H Katsura (2007) -
Piemov, A. et al. Possible evidence for electromagnons in multiferroic manganites. Nature Phys. 2, 97–100 (2006).
(
10.1038/nphys212
) / Nature Phys. by A Piemov (2006) - Kimura, T., Lawes, G. & Ramirez, A. P. Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures. Phys. Rev. Lett. 94, 132701 (2005). / Phys. Rev. Lett. by T Kimura (2005)
-
Ishiwata, S., Taguchi, Y., Murakawa, H., Onose, Y. & Tokura, Y. Low-magnetic-field control of electric polarization vector in a helimagnet. Science 319, 1643–1646 (2008).
(
10.1126/science.1154507
) / Science by S Ishiwata (2008) -
Kézsmárki, I. et al. Enhanced directional dichroism of terahertz light in resonance with magnetic excitations of the multiferroic Ba2CoGe2O7 oxide compound. Phys. Rev. Lett. 106, 057403 (2011).
(
10.1103/PhysRevLett.106.057403
) / Phys. Rev. Lett. by I Kézsmárki (2011) -
Bordács, S. et al. Chirality of matter shows up via spin excitations. Nature Phys. 8, 734–738 (2012).
(
10.1038/nphys2387
) / Nature Phys. by S Bordács (2012) -
Saito, M., Ishikawa, K., Taniguchi, K. & Arima, T. Magnetic control of crystal chirality and the existence of a large magneto-optical dichroism effect in CuB2O4 . Phys. Rev. Lett. 101, 117402 (2008).
(
10.1103/PhysRevLett.101.117402
) / Phys. Rev. Lett. by M Saito (2008) -
Tokura, Y., Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 69, 797–851 (2006).
(
10.1088/0034-4885/69/3/R06
) / Rep. Prog. Phys. by Y Tokura (2006) -
Vaz, C. A. F., Hoffman, J., Ahn, C. H. & Ramesh, R. Magnetoelectric coupling effects in mutliferroic complex oxide composite structures. Adv. Mater. 22, 2900–2918 (2010).
(
10.1002/adma.200904326
) / Adv. Mater. by CAF Vaz (2010) -
Molegraaf, H. J. A. et al. Magnetoelectric effects in complex oxides with competing ground states. Adv. Mater. 21, 3470–3474 (2009).
(
10.1002/adma.200900278
) / Adv. Mater. by HJA Molegraaf (2009) -
Vaz, C. A. F. et al. Origin of the magnetoelectric coupling effect in Pb(Zr0.2Ti0.8)O3/La0.8Sr0.2MnO3 multiferroic heterostructures. Phys. Rev. Lett. 104, 127202 (2010).
(
10.1103/PhysRevLett.104.127202
) / Phys. Rev. Lett. by CAF Vaz (2010) -
Burton, J. D. & Tsymbal, E. Y. Prediction of electrically induced magnetic reconstruction at the manganite/ferroelectric interface. Phys. Rev. B 80, 174406 (2009).
(
10.1103/PhysRevB.80.174406
) / Phys. Rev. B by JD Burton (2009) -
Lu, H. et al. Electric modulation of magnetization at the BaTiO3/La0.67Sr0.33MnO3 interfaces. Appl. Phys. Lett. 100, 232904 (2012).
(
10.1063/1.4726427
) / Appl. Phys. Lett. by H Lu (2012) -
Yin, Y. W. et al. Enhanced tunnelling electroresistance effect due to a ferroelectrically induced phase transition at a magnetic complex oxide interface. Nature Mater. 12, 397–402 (2013).
(
10.1038/nmat3564
) / Nature Mater. by YW Yin (2013) -
Garcia, V. et al. Ferroelectric control of spin polarization. Science 327, 1106–1110 (2010). This was the first report of non-volatile electrical control of carrier spin-polarization in ferroelectric tunnel junctions.
(
10.1126/science.1184028
) / Science by V Garcia (2010) -
Pantel, D., Goetze, S., Hesse, D. & Alexe, M. Reversible electric switching of spin polarization in multiferroic tunnel junctions. Nature Mater. 11, 289–293 (2012).
(
10.1038/nmat3254
) / Nature Mater. by D Pantel (2012) -
Duan, C.-G., Jaswal, S. S. & Tsymbal, E. Y. Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: Ferroelectric control of magnetism. Phys. Rev. Lett. 97, 047201 (2006).
(
10.1103/PhysRevLett.97.047201
) / Phys. Rev. Lett. by C-G Duan (2006) -
Valencia, S. et al. Interface-induced room-temperature multiferroicity in BaTiO3 . Nature Mater. 10, 753–758 (2011).
(
10.1038/nmat3098
) / Nature Mater. by S Valencia (2011) -
Radaelli, G. et al. Electric control of magnetism at the Fe/BaTiO3 interface. Nature Commun. 5, 3404–3412 (2014).
(
10.1038/ncomms4404
) / Nature Commun. by G Radaelli (2014) -
Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).
(
10.1063/1.102730
) / Appl. Phys. Lett. by S Datta (1990) -
Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997).
(
10.1103/PhysRevLett.78.1335
) / Phys. Rev. Lett. by J Nitta (1997) -
Kohda, M., Bergsten, T. & Nitta, J. Manipulating spin-orbit interaction in semiconductors. J. Phys. Soc. Jpn 77, 0310008 (2008).
(
10.1143/JPSJ.77.031008
) / J. Phys. Soc. Jpn by M Kohda (2008) -
Ishihara, J., Ohno, Y. & Ohno, H. Direct imaging of gate-controlled persistent spin helix state in a modulation-doped GaAs/AlGaAs quantum well. Appl. Phys. Express 7, 013001 (2014).
(
10.7567/APEX.7.013001
) / Appl. Phys. Express by J Ishihara (2014) -
Sanada, H. et al. Gate control of dynamic nuclear polarization in GaAs quantum wells. Phys. Rev. Lett. 94, 097601 (2005).
(
10.1103/PhysRevLett.94.097601
) / Phys. Rev. Lett. by H Sanada (2005) -
Ono, M., Ishihara, J., Sato, G., Ohno, Y. & Ohno, H. Coherent manipulation of nuclear spins in semiconductors with an electric field. Appl. Phys. Express 6, 033002 (2013).
(
10.7567/APEX.6.033002
) / Appl. Phys. Express by M Ono (2013) -
Ueno, K. et al. Field-induced superconductivity in electric double layer transistors. J. Phys. Soc. Jpn 83, 032001 (2014).
(
10.7566/JPSJ.83.032001
) / J. Phys. Soc. Jpn by K Ueno (2014) -
Sun, Y., Burton, J. D. & Tsymbal, E. Y. Electrically driven magnetism on a Pd thin film. Phys. Rev. B 81, 064413 (2010).
(
10.1103/PhysRevB.81.064413
) / Phys. Rev. B by Y Sun (2010) -
Shimizu, S. et al. Electrically tunable anomalous Hall effect in Pt thin films. Phys. Rev. Lett. 111, 21603 (2013).
(
10.1103/PhysRevLett.111.216803
) / Phys. Rev. Lett. by S Shimizu (2013)
Dates
Type | When |
---|---|
Created | 10 years, 5 months ago (March 5, 2015, 6:40 a.m.) |
Deposited | 2 years, 3 months ago (May 18, 2023, 7:44 p.m.) |
Indexed | 2 weeks, 2 days ago (Aug. 6, 2025, 9:52 a.m.) |
Issued | 10 years, 5 months ago (March 1, 2015) |
Published | 10 years, 5 months ago (March 1, 2015) |
Published Online | 10 years, 5 months ago (March 5, 2015) |
Published Print | 10 years, 5 months ago (March 1, 2015) |
@article{Matsukura_2015, title={Control of magnetism by electric fields}, volume={10}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2015.22}, DOI={10.1038/nnano.2015.22}, number={3}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Matsukura, Fumihiro and Tokura, Yoshinori and Ohno, Hideo}, year={2015}, month=mar, pages={209–220} }