Crossref journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Bibliography

Yu, D., Goh, K., Wang, H., Wei, L., Jiang, W., Zhang, Q., Dai, L., & Chen, Y. (2014). Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nature Nanotechnology, 9(7), 555–562.

Authors 8
  1. Dingshan Yu (first)
  2. Kunli Goh (additional)
  3. Hong Wang (additional)
  4. Li Wei (additional)
  5. Wenchao Jiang (additional)
  6. Qiang Zhang (additional)
  7. Liming Dai (additional)
  8. Yuan Chen (additional)
References 51 Referenced 1,372
  1. Pech, D. et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nature Nanotech. 5, 651–654 (2010). (10.1038/nnano.2010.162) / Nature Nanotech. by D Pech (2010)
  2. Gao, W. et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nature Nanotech. 6, 496–500 (2011). (10.1038/nnano.2011.110) / Nature Nanotech. by W Gao (2011)
  3. El-Kady, M. F. & Kaner, R. B. Scalable fabrication of high-power graphene micro- supercapacitors for flexible and on-chip energy storage. Nature Commun. 4, 1475 (2013).
  4. Bae, J. et al. Fibre supercapacitors made of nanowire–fibre hybrid structures for wearable/flexible energy storage. Angew. Chem. Int. Ed. 50, 1683–1687 (2011). (10.1002/anie.201006062) / Angew. Chem. Int. Ed. by J Bae (2011)
  5. Chmiola, J., Largeot, C., Taberna, P. L., Simon, P. & Gogotsi, Y. Monolithic carbide-derived carbon films for micro-supercapacitors. Science 328, 480–483 (2010). (10.1126/science.1184126) / Science by J Chmiola (2010)
  6. El-Kady, M. F., Strong, V., Dubin, S. & Kaner, R. B. Laser scribing of high performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012). (10.1126/science.1216744) / Science by MF El-Kady (2012)
  7. Yang, X., Cheng, C., Wang, Y., Qiu, L. & Li, D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341, 534–537 (2013). (10.1126/science.1239089) / Science by X Yang (2013)
  8. Gogotsi, Y. & Simon, P. True performance metrics in electrochemical energy storage. Science 334, 917–918 (2011). (10.1126/science.1213003) / Science by Y Gogotsi (2011)
  9. Nam, I. et al. Interdigitated supercapacitor chips are fabricated using pseudo-capacitive metal oxide electrodes. Nanoscale 4, 7350–7353 (2012). (10.1039/c2nr31961f) / Nanoscale by I Nam (2012)
  10. Sun, W. & Chen, X. Y. Fabrication and tests of a novel three dimensional microsupercapacitor. Microelectron. Eng. 86, 1307–1310 (2009). (10.1016/j.mee.2008.12.010) / Microelectron. Eng. by W Sun (2009)
  11. Wang, K. et al. An all-solid-state flexible micro-supercapacitor on a chip. Adv. Energy Mater. 1, 1068–1072 (2011). (10.1002/aenm.201100488) / Adv. Energy Mater. by K Wang (2011)
  12. Liu, W., Feng, Y., Chen, J. & Xue, Q. Superior micro-supercapacitors based on graphene quantum dots. Adv. Funct. Mater. 23, 4111–4122 (2013). (10.1002/adfm.201203771) / Adv. Funct. Mater. by W Liu (2013)
  13. Beidaghi, M. & Wang, C. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 22, 4501–4510 (2012). (10.1002/adfm.201201292) / Adv. Funct. Mater. by M Beidaghi (2012)
  14. Yang, P. et al. Hydrogenated ZnO core–shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 7, 2617–2626 (2013). (10.1021/nn306044d) / ACS Nano by P Yang (2013)
  15. Lee, V. T. et al. Coaxial fibre supercapacitor using all-carbon material electrodes. ACS Nano 7, 5940–5947 (2013). (10.1021/nn4016345) / ACS Nano by VT Lee (2013)
  16. Chen, X. et al. Novel electric double-layer capacitor with a coaxial fibre structure. Adv. Mater. 25, 6436–6441 (2013). (10.1002/adma.201301519) / Adv. Mater. by X Chen (2013)
  17. Ren, J., Bai, W., Guan, G., Zhang, Y. & Peng, H. Flexible and weaveable capacitor wire based on carbon nanocomposite fibre. Adv. Mater. 25, 5965–5970 (2013). (10.1002/adma.201302498) / Adv. Mater. by J Ren (2013)
  18. Meng, Y., Zhao, Y., Hu, C., Cheng, H. & Hu, Y. All-graphene core–sheath microfibres for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 25, 2326–2331 (2013). (10.1002/adma.201300132) / Adv. Mater. by Y Meng (2013)
  19. Ren, J. et al. Twisting carbon nanotube fibres for both wire-shaped micro-supercapacitor and micro-battery. Adv. Mater. 24, 1155–1159 (2012). / Adv. Mater. by J Ren (2012)
  20. Xiao, X. et al. Fibre-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 6, 9200–9206 (2012). (10.1021/nn303530k) / ACS Nano by X Xiao (2012)
  21. Tao, J. et al. Solid-state high performance flexible supercapacitors based on polypyrrole–MnO2–carbon fibre hybrid structure. Sci. Rep. 3, 2286 (2013).
  22. Lee, J. A. et al. Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nature Commun. 4, 1970 (2013).
  23. Zhao, Y. et al. A versatile, ultralight, nitrogen-doped graphene framework. Angew. Chem. Int. Ed. 51, 11371–11375 (2012). (10.1002/anie.201206554) / Angew. Chem. Int. Ed. by Y Zhao (2012)
  24. Yu, D. & Dai, L. Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J. Phys. Chem. Lett. 1, 467–470 (2010). (10.1021/jz9003137) / J. Phys. Chem. Lett. by D Yu (2010)
  25. Jha, N., Ramesh, P., Bekyarova, E., Itkis, M. E. & Haddon, R. C. High energy density supercapacitor based on a hybrid carbon nanotube-reduced graphite oxide architecture. Adv. Energy Mater. 2, 438–444 (2012). (10.1002/aenm.201100697) / Adv. Energy Mater. by N Jha (2012)
  26. Zhu, Y. et al. A seamless three-dimensional carbon nanotube graphene hybrid material. Nature Commun. 3, 1225 (2012).
  27. Du, F. et al. Preparation of tunable 3D pillared carbon nanotube–graphene networks for high-performance capacitance. Chem. Mater. 23, 4810–4816 (2011). (10.1021/cm2021214) / Chem. Mater. by F Du (2011)
  28. Lin, J. et al. 3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 13, 72–78 (2013). / Nano Letters by Jian Lin (2012)
  29. Chen, P. et al. Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy 2, 249–256 (2013). (10.1016/j.nanoen.2012.09.003) / Nano Energy by P Chen (2013)
  30. Cote, L. J. et al. Graphene oxide as surfactant sheets. Pure Appl. Chem. 83, 95–110 (2011). (10.1351/PAC-CON-10-10-25) / Pure Appl. Chem. by LJ Cote (2011)
  31. Gong, K. P. et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009). (10.1126/science.1168049) / Science by KP Gong (2009)
  32. Yu, D., Zhang, Q. & Dai, L. Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction. J. Am. Chem. Soc. 132, 15127–15129 (2010). (10.1021/ja105617z) / J. Am. Chem. Soc. by D Yu (2010)
  33. Song, S. et al. Reversible self-assembly of terpyridine functionalized graphene oxide for energy conversion. Angew. Chem. Int. Ed. 53, 1415–1419 (2013). (10.1002/anie.201309641) / Angew. Chem. Int. Ed. by S Song (2013)
  34. Li, Y., Li, Z. & Shen, P. Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv. Mater. 25, 2474–2480 (2013). (10.1002/adma.201205332) / Adv. Mater. by Y Li (2013)
  35. Dong, Z. L. et al. Facile fabrication of light, flexible and multifunctional graphene fibres. Adv. Mater. 24, 1856–1861 (2012). (10.1002/adma.201200170) / Adv. Mater. by ZL Dong (2012)
  36. Xu, Z. & Gao, C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nature. Commun. 2, 571 (2011).
  37. Ericson, L. M. et al. Macroscopic, neat, single-walled carbon nanotube fibres. Science 305, 1447–1450 (2004). (10.1126/science.1101398) / Science by LM Ericson (2004)
  38. Cheng, H. et al. Textile electrodes woven by carbon nanotube/graphene hybrid fibres for flexible electrochemical capacitors. Nanoscale 5, 3428–3434 (2013). (10.1039/c3nr00320e) / Nanoscale by H Cheng (2013)
  39. Zhao, X., Lu, X., Tze, W. T. Y. & Wang, P. A single carbon fibre microelectrode with branching carbon nanotubes for bioelectrochemical processes. Biosens. Bioelectron. 25, 2343–2350 (2010). (10.1016/j.bios.2010.03.030) / Biosens. Bioelectron. by X Zhao (2010)
  40. Neimark, A. V., Ruetsch, S., Kornev, K. G. & Ravikovitch, P. I. Hierarchical pore structure and wetting properties of single-wall carbon nanotube fibres. Nano Lett. 3, 419–423 (2003). (10.1021/nl034013x) / Nano Lett. by AV Neimark (2003)
  41. Xu, Z., Zhang, Y., Li, P. & Gao, C. Strong, conductive, lightweight, neat graphene aerogel fibres with aligned pores. ACS Nano 6, 7103–7113 (2011). (10.1021/nn3021772) / ACS Nano by Z Xu (2011)
  42. Pan, H. L. et al. Well-aligned carbon nanotubols from mechanochemical reaction. Nano Lett. 3, 29–32 (2003). (10.1021/nl025856b) / Nano Lett. by HL Pan (2003)
  43. Byon, H. R., Lee, S. W., Chen, S., Hammond, P. T. & Shao-Horn, Y. Thin films of carbon nanotubes and chemically reduced graphenes for electrochemical micro-capacitors. Carbon 49, 457–467 (2011). (10.1016/j.carbon.2010.09.042) / Carbon by HR Byon (2011)
  44. Cong, H. P., Ren, X-C. Wang, P. & Yu, S. H. Wet-spinning assembly of continuous, neat, and macroscopic graphene fibres. Sci. Rep. 2, 613 (2012).
  45. Lu, W., Zu, M., Byun, J. H., Kim, B. S. & Chou, T. W. State of the art of carbon nanotube fibres: opportunities and challenges. Adv. Mater. 24, 1805–1833 (2012). (10.1002/adma.201104672) / Adv. Mater. by W Lu (2012)
  46. Gao, F., Viry, L., Maugey, M., Poulin, P. & Mano, N. Engineering hybrid nanotube wires for high-power biofuel cells. Nature Commun. 1, 2 (2010).
  47. Lukatskaya, M. R. et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013). (10.1126/science.1241488) / Science by MR Lukatskaya (2013)
  48. Jeong, H. M. et al. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 11, 2472–2477 (2011). (10.1021/nl2009058) / Nano Lett. by HM Jeong (2011)
  49. Tao, Y. et al. Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Sci. Rep. 3, 2975 (2013). (10.1038/srep02975) / Sci. Rep. by Y Tao (2013)
  50. Kumar, A., Madaria, A. R. & Zhou, C. W. Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells. J. Phys. Chem. C 114, 7787–7792 (2010). (10.1021/jp100491h) / J. Phys. Chem. C by A Kumar (2010)
  51. Liu, S. B. et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5, 6971–6980 (2011). (10.1021/nn202451x) / ACS Nano by SB Liu (2011)
Dates
Type When
Created 11 years, 3 months ago (May 11, 2014, 2:53 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 7:43 p.m.)
Indexed 40 minutes ago (Aug. 27, 2025, 8:20 p.m.)
Issued 11 years, 3 months ago (May 11, 2014)
Published 11 years, 3 months ago (May 11, 2014)
Published Online 11 years, 3 months ago (May 11, 2014)
Published Print 11 years, 1 month ago (July 1, 2014)
Funders 0

None

@article{Yu_2014, title={Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage}, volume={9}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2014.93}, DOI={10.1038/nnano.2014.93}, number={7}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Yu, Dingshan and Goh, Kunli and Wang, Hong and Wei, Li and Jiang, Wenchao and Zhang, Qiang and Dai, Liming and Chen, Yuan}, year={2014}, month=may, pages={555–562} }