Crossref
journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Authors
8
- Dingshan Yu (first)
- Kunli Goh (additional)
- Hong Wang (additional)
- Li Wei (additional)
- Wenchao Jiang (additional)
- Qiang Zhang (additional)
- Liming Dai (additional)
- Yuan Chen (additional)
References
51
Referenced
1,372
-
Pech, D. et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nature Nanotech. 5, 651–654 (2010).
(
10.1038/nnano.2010.162
) / Nature Nanotech. by D Pech (2010) -
Gao, W. et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nature Nanotech. 6, 496–500 (2011).
(
10.1038/nnano.2011.110
) / Nature Nanotech. by W Gao (2011) - El-Kady, M. F. & Kaner, R. B. Scalable fabrication of high-power graphene micro- supercapacitors for flexible and on-chip energy storage. Nature Commun. 4, 1475 (2013).
-
Bae, J. et al. Fibre supercapacitors made of nanowire–fibre hybrid structures for wearable/flexible energy storage. Angew. Chem. Int. Ed. 50, 1683–1687 (2011).
(
10.1002/anie.201006062
) / Angew. Chem. Int. Ed. by J Bae (2011) -
Chmiola, J., Largeot, C., Taberna, P. L., Simon, P. & Gogotsi, Y. Monolithic carbide-derived carbon films for micro-supercapacitors. Science 328, 480–483 (2010).
(
10.1126/science.1184126
) / Science by J Chmiola (2010) -
El-Kady, M. F., Strong, V., Dubin, S. & Kaner, R. B. Laser scribing of high performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012).
(
10.1126/science.1216744
) / Science by MF El-Kady (2012) -
Yang, X., Cheng, C., Wang, Y., Qiu, L. & Li, D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341, 534–537 (2013).
(
10.1126/science.1239089
) / Science by X Yang (2013) -
Gogotsi, Y. & Simon, P. True performance metrics in electrochemical energy storage. Science 334, 917–918 (2011).
(
10.1126/science.1213003
) / Science by Y Gogotsi (2011) -
Nam, I. et al. Interdigitated supercapacitor chips are fabricated using pseudo-capacitive metal oxide electrodes. Nanoscale 4, 7350–7353 (2012).
(
10.1039/c2nr31961f
) / Nanoscale by I Nam (2012) -
Sun, W. & Chen, X. Y. Fabrication and tests of a novel three dimensional microsupercapacitor. Microelectron. Eng. 86, 1307–1310 (2009).
(
10.1016/j.mee.2008.12.010
) / Microelectron. Eng. by W Sun (2009) -
Wang, K. et al. An all-solid-state flexible micro-supercapacitor on a chip. Adv. Energy Mater. 1, 1068–1072 (2011).
(
10.1002/aenm.201100488
) / Adv. Energy Mater. by K Wang (2011) -
Liu, W., Feng, Y., Chen, J. & Xue, Q. Superior micro-supercapacitors based on graphene quantum dots. Adv. Funct. Mater. 23, 4111–4122 (2013).
(
10.1002/adfm.201203771
) / Adv. Funct. Mater. by W Liu (2013) -
Beidaghi, M. & Wang, C. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 22, 4501–4510 (2012).
(
10.1002/adfm.201201292
) / Adv. Funct. Mater. by M Beidaghi (2012) -
Yang, P. et al. Hydrogenated ZnO core–shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 7, 2617–2626 (2013).
(
10.1021/nn306044d
) / ACS Nano by P Yang (2013) -
Lee, V. T. et al. Coaxial fibre supercapacitor using all-carbon material electrodes. ACS Nano 7, 5940–5947 (2013).
(
10.1021/nn4016345
) / ACS Nano by VT Lee (2013) -
Chen, X. et al. Novel electric double-layer capacitor with a coaxial fibre structure. Adv. Mater. 25, 6436–6441 (2013).
(
10.1002/adma.201301519
) / Adv. Mater. by X Chen (2013) -
Ren, J., Bai, W., Guan, G., Zhang, Y. & Peng, H. Flexible and weaveable capacitor wire based on carbon nanocomposite fibre. Adv. Mater. 25, 5965–5970 (2013).
(
10.1002/adma.201302498
) / Adv. Mater. by J Ren (2013) -
Meng, Y., Zhao, Y., Hu, C., Cheng, H. & Hu, Y. All-graphene core–sheath microfibres for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 25, 2326–2331 (2013).
(
10.1002/adma.201300132
) / Adv. Mater. by Y Meng (2013) - Ren, J. et al. Twisting carbon nanotube fibres for both wire-shaped micro-supercapacitor and micro-battery. Adv. Mater. 24, 1155–1159 (2012). / Adv. Mater. by J Ren (2012)
-
Xiao, X. et al. Fibre-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 6, 9200–9206 (2012).
(
10.1021/nn303530k
) / ACS Nano by X Xiao (2012) - Tao, J. et al. Solid-state high performance flexible supercapacitors based on polypyrrole–MnO2–carbon fibre hybrid structure. Sci. Rep. 3, 2286 (2013).
- Lee, J. A. et al. Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nature Commun. 4, 1970 (2013).
-
Zhao, Y. et al. A versatile, ultralight, nitrogen-doped graphene framework. Angew. Chem. Int. Ed. 51, 11371–11375 (2012).
(
10.1002/anie.201206554
) / Angew. Chem. Int. Ed. by Y Zhao (2012) -
Yu, D. & Dai, L. Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J. Phys. Chem. Lett. 1, 467–470 (2010).
(
10.1021/jz9003137
) / J. Phys. Chem. Lett. by D Yu (2010) -
Jha, N., Ramesh, P., Bekyarova, E., Itkis, M. E. & Haddon, R. C. High energy density supercapacitor based on a hybrid carbon nanotube-reduced graphite oxide architecture. Adv. Energy Mater. 2, 438–444 (2012).
(
10.1002/aenm.201100697
) / Adv. Energy Mater. by N Jha (2012) - Zhu, Y. et al. A seamless three-dimensional carbon nanotube graphene hybrid material. Nature Commun. 3, 1225 (2012).
-
Du, F. et al. Preparation of tunable 3D pillared carbon nanotube–graphene networks for high-performance capacitance. Chem. Mater. 23, 4810–4816 (2011).
(
10.1021/cm2021214
) / Chem. Mater. by F Du (2011) - Lin, J. et al. 3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 13, 72–78 (2013). / Nano Letters by Jian Lin (2012)
-
Chen, P. et al. Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy 2, 249–256 (2013).
(
10.1016/j.nanoen.2012.09.003
) / Nano Energy by P Chen (2013) -
Cote, L. J. et al. Graphene oxide as surfactant sheets. Pure Appl. Chem. 83, 95–110 (2011).
(
10.1351/PAC-CON-10-10-25
) / Pure Appl. Chem. by LJ Cote (2011) -
Gong, K. P. et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009).
(
10.1126/science.1168049
) / Science by KP Gong (2009) -
Yu, D., Zhang, Q. & Dai, L. Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction. J. Am. Chem. Soc. 132, 15127–15129 (2010).
(
10.1021/ja105617z
) / J. Am. Chem. Soc. by D Yu (2010) -
Song, S. et al. Reversible self-assembly of terpyridine functionalized graphene oxide for energy conversion. Angew. Chem. Int. Ed. 53, 1415–1419 (2013).
(
10.1002/anie.201309641
) / Angew. Chem. Int. Ed. by S Song (2013) -
Li, Y., Li, Z. & Shen, P. Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv. Mater. 25, 2474–2480 (2013).
(
10.1002/adma.201205332
) / Adv. Mater. by Y Li (2013) -
Dong, Z. L. et al. Facile fabrication of light, flexible and multifunctional graphene fibres. Adv. Mater. 24, 1856–1861 (2012).
(
10.1002/adma.201200170
) / Adv. Mater. by ZL Dong (2012) - Xu, Z. & Gao, C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nature. Commun. 2, 571 (2011).
-
Ericson, L. M. et al. Macroscopic, neat, single-walled carbon nanotube fibres. Science 305, 1447–1450 (2004).
(
10.1126/science.1101398
) / Science by LM Ericson (2004) -
Cheng, H. et al. Textile electrodes woven by carbon nanotube/graphene hybrid fibres for flexible electrochemical capacitors. Nanoscale 5, 3428–3434 (2013).
(
10.1039/c3nr00320e
) / Nanoscale by H Cheng (2013) -
Zhao, X., Lu, X., Tze, W. T. Y. & Wang, P. A single carbon fibre microelectrode with branching carbon nanotubes for bioelectrochemical processes. Biosens. Bioelectron. 25, 2343–2350 (2010).
(
10.1016/j.bios.2010.03.030
) / Biosens. Bioelectron. by X Zhao (2010) -
Neimark, A. V., Ruetsch, S., Kornev, K. G. & Ravikovitch, P. I. Hierarchical pore structure and wetting properties of single-wall carbon nanotube fibres. Nano Lett. 3, 419–423 (2003).
(
10.1021/nl034013x
) / Nano Lett. by AV Neimark (2003) -
Xu, Z., Zhang, Y., Li, P. & Gao, C. Strong, conductive, lightweight, neat graphene aerogel fibres with aligned pores. ACS Nano 6, 7103–7113 (2011).
(
10.1021/nn3021772
) / ACS Nano by Z Xu (2011) -
Pan, H. L. et al. Well-aligned carbon nanotubols from mechanochemical reaction. Nano Lett. 3, 29–32 (2003).
(
10.1021/nl025856b
) / Nano Lett. by HL Pan (2003) -
Byon, H. R., Lee, S. W., Chen, S., Hammond, P. T. & Shao-Horn, Y. Thin films of carbon nanotubes and chemically reduced graphenes for electrochemical micro-capacitors. Carbon 49, 457–467 (2011).
(
10.1016/j.carbon.2010.09.042
) / Carbon by HR Byon (2011) - Cong, H. P., Ren, X-C. Wang, P. & Yu, S. H. Wet-spinning assembly of continuous, neat, and macroscopic graphene fibres. Sci. Rep. 2, 613 (2012).
-
Lu, W., Zu, M., Byun, J. H., Kim, B. S. & Chou, T. W. State of the art of carbon nanotube fibres: opportunities and challenges. Adv. Mater. 24, 1805–1833 (2012).
(
10.1002/adma.201104672
) / Adv. Mater. by W Lu (2012) - Gao, F., Viry, L., Maugey, M., Poulin, P. & Mano, N. Engineering hybrid nanotube wires for high-power biofuel cells. Nature Commun. 1, 2 (2010).
-
Lukatskaya, M. R. et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013).
(
10.1126/science.1241488
) / Science by MR Lukatskaya (2013) -
Jeong, H. M. et al. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 11, 2472–2477 (2011).
(
10.1021/nl2009058
) / Nano Lett. by HM Jeong (2011) -
Tao, Y. et al. Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Sci. Rep. 3, 2975 (2013).
(
10.1038/srep02975
) / Sci. Rep. by Y Tao (2013) -
Kumar, A., Madaria, A. R. & Zhou, C. W. Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells. J. Phys. Chem. C 114, 7787–7792 (2010).
(
10.1021/jp100491h
) / J. Phys. Chem. C by A Kumar (2010) -
Liu, S. B. et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5, 6971–6980 (2011).
(
10.1021/nn202451x
) / ACS Nano by SB Liu (2011)
Dates
Type | When |
---|---|
Created | 11 years, 3 months ago (May 11, 2014, 2:53 p.m.) |
Deposited | 2 years, 3 months ago (May 18, 2023, 7:43 p.m.) |
Indexed | 40 minutes ago (Aug. 27, 2025, 8:20 p.m.) |
Issued | 11 years, 3 months ago (May 11, 2014) |
Published | 11 years, 3 months ago (May 11, 2014) |
Published Online | 11 years, 3 months ago (May 11, 2014) |
Published Print | 11 years, 1 month ago (July 1, 2014) |
@article{Yu_2014, title={Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage}, volume={9}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2014.93}, DOI={10.1038/nnano.2014.93}, number={7}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Yu, Dingshan and Goh, Kunli and Wang, Hong and Wei, Li and Jiang, Wenchao and Zhang, Qiang and Dai, Liming and Chen, Yuan}, year={2014}, month=may, pages={555–562} }