Crossref journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Bibliography

Singh, V., Bougher, T. L., Weathers, A., Cai, Y., Bi, K., Pettes, M. T., McMenamin, S. A., Lv, W., Resler, D. P., Gattuso, T. R., Altman, D. H., Sandhage, K. H., Shi, L., Henry, A., & Cola, B. A. (2014). High thermal conductivity of chain-oriented amorphous polythiophene. Nature Nanotechnology, 9(5), 384–390.

Authors 15
  1. Virendra Singh (first)
  2. Thomas L. Bougher (additional)
  3. Annie Weathers (additional)
  4. Ye Cai (additional)
  5. Kedong Bi (additional)
  6. Michael T. Pettes (additional)
  7. Sally A. McMenamin (additional)
  8. Wei Lv (additional)
  9. Daniel P. Resler (additional)
  10. Todd R. Gattuso (additional)
  11. David H. Altman (additional)
  12. Kenneth H. Sandhage (additional)
  13. Li Shi (additional)
  14. Asegun Henry (additional)
  15. Baratunde A. Cola (additional)
References 34 Referenced 377
  1. Choy, C. L. Thermal conductivity of polymers. Polymer 18, 984–1004 (1977). (10.1016/0032-3861(77)90002-7) / Polymer by CL Choy (1977)
  2. Henry, A. Thermal transport in polymers. Ann. Rev. Heat Transfer http://dx.doi.org/10.1615/AnnualRevHeatTransfer.2013006949 (2013). (10.1615/AnnualRevHeatTransfer.2013006949)
  3. Han, Z. D. & Fina, A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 36, 914–944 (2011). (10.1016/j.progpolymsci.2010.11.004) / Prog. Polym. Sci. by ZD Han (2011)
  4. Wang, X., Ho, V., Segalman, R. A. & Cahill, D. G. Thermal conductivity of high-modulus polymer fibers. Macromolecules 46, 4937–4943 (2013). (10.1021/ma400612y) / Macromolecules by X Wang (2013)
  5. Liu, J. & Yang, R. Length-dependent thermal conductivity of single extended polymer chains. Phys. Rev. B 86, 104307 (2012). (10.1103/PhysRevB.86.104307) / Phys. Rev. B by J Liu (2012)
  6. Arkadii, A., Michael, B., Oleg, G. & Eyal, Z. Effect of supramolecular structure on polymer nanofibre elasticity. Nature Nanotech. 2, 59–62 (2007). (10.1038/nnano.2006.172) / Nature Nanotech. by A Arkadii (2007)
  7. Choy, C. L., Wong, Y. W., Yang, G. W. & Kanamoto, T. Elastic modulus and thermal conductivity of ultradrawn polyethylene. J. Polym. Sci. 37, 3359–3367 (1999). (10.1002/(SICI)1099-0488(19991201)37:23<3359::AID-POLB11>3.0.CO;2-S) / J. Polym. Sci. by CL Choy (1999)
  8. Lim, C., Tan, E. & Ng, S. Effects of crystalline morphology on the tensile properties of electrospun polymer nanofibers. Appl. Phys. Lett. 92, 141908 (2008). (10.1063/1.2857478) / Appl. Phys. Lett. by C Lim (2008)
  9. Choy, C. L., Chen, F. C. & Luk, W. H. Thermal conductivity of oriented crystalline polymers. J. Polym. Sci. 18, 1187–1207 (1980). / J. Polym. Sci. by CL Choy (1980)
  10. Papkov, D. et al. Simultaneously strong and tough ultrafine continuous nanofibers. ACS Nano 7, 3324–3331 (2013). (10.1021/nn400028p) / ACS Nano by D Papkov (2013)
  11. Prasher, R. Thermal interface materials: historical perspective, status, and future directions. Proc. IEEE 94, 1571–1586 (2006). (10.1109/JPROC.2006.879796) / Proc. IEEE by R Prasher (2006)
  12. Kurabayashi, K., Asheghi, M., Touzelbaev, M. & Goodson, K. E. Measurement of the thermal conductivity anisotropy in polyimide films. J. Microelectromech. Syst. 8, 180–191 (1999). (10.1109/84.767114) / J. Microelectromech. Syst. by K Kurabayashi (1999)
  13. Lu, G. et al. Drying enhanced adhesion of polythiophene nanotubule arrays on smooth surfaces. ACS Nano 2, 2342–2348 (2008). (10.1021/nn800443m) / ACS Nano by G Lu (2008)
  14. Xiao, R., Cho, S. I., Liu, R. & Lee, S. B. Controlled electrochemical synthesis of conductive polymer nanotube structures. J. Am. Chem. Soc. 129, 4483–4489 (2007). (10.1021/ja068924v) / J. Am. Chem. Soc. by R Xiao (2007)
  15. Martin, C. R. Nanomaterials: a membrane-based synthetic approach. Science 266, 1961–1966 (1994). (10.1126/science.266.5193.1961) / Science by CR Martin (1994)
  16. Cannon, J. P., Bearden, S. D. & Gold, S. A. Effect of wetting solvent on poly (3-hexylthiophene)(P3HT) nanotubles fabricated via template wetting. Synth. Met. 160, 2623–2627 (2010). (10.1016/j.synthmet.2010.10.014) / Synth. Met. by JP Cannon (2010)
  17. Shen, S., Henry, A., Tong, J., Zheng, R. & Chen, G. Polyethylene nanofibres with very high thermal conductivities. Nature Nanotech. 5, 251–255 (2010). (10.1038/nnano.2010.27) / Nature Nanotech. by S Shen (2010)
  18. Bazzaoui, E. A. et al. SERS spectra of polythiophene in doped and undoped states. J. Phys. Chem. 99, 6628–6634 (1995). (10.1021/j100017a052) / J. Phys. Chem. by EA Bazzaoui (1995)
  19. Louarn, G., Buisson, J. P., Lefrant, S. & Fichou, D. Vibrational studies of a series of alpha-oligothiophenes as model systems of polythiophene. J. Phys. Chem. 99, 11399–11404 (1995). (10.1021/j100029a016) / J. Phys. Chem. by G Louarn (1995)
  20. Shi, L. et al. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transfer 125, 881–888 (2003). (10.1115/1.1597619) / J. Heat Transfer by L Shi (2003)
  21. Cahill, D. G., Watson, S. K. & Pohl, R. O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131–6140 (1992). (10.1103/PhysRevB.46.6131) / Phys. Rev. B by DG Cahill (1992)
  22. Bullen, A. J., O'Hara, K. E., Cahill, D. G., Monteiro, O. & von Keudell, A. Thermal conductivity of amorphous carbon thin films. J. Appl. Phys. 88, 6317–6320 (2000). (10.1063/1.1314301) / J. Appl. Phys. by AJ Bullen (2000)
  23. Liu, X. et al. High thermal conductivity of a hydrogenated amorphous silicon film. Phys. Rev. Lett. 102, 035901 (2009). (10.1103/PhysRevLett.102.035901) / Phys. Rev. Lett. by X Liu (2009)
  24. Allen, P. B., Feldman, J. L., Fabian, J. & Wooten, F. Diffusons, locons and propagons: character of atomic vibrations in amorphous Si. Phil. Mag. B 79, 1715–1731 (1999). (10.1080/13642819908223054) / Phil. Mag. B by PB Allen (1999)
  25. Feldman, J. L., Kluge, M. D., Allen, P. B. & Wooten, F. Thermal conductivity and localization in glasses: numerical study of a model of amorphous silicon. Phys. Rev. B 48, 12589–12602 (1993). (10.1103/PhysRevB.48.12589) / Phys. Rev. B by JL Feldman (1993)
  26. Regner, K. T. et al. Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Nature Commun. 4, 1640 (2013). (10.1038/ncomms2630) / Nature Commun. by KT Regner (2013)
  27. Osinin, S. & Nosov, M. Relation between the speed of sound and the orientation of chain molecules in anisotropic systems. Mech. Compos. Mater. 2, 4–6 (1966). / Mech. Compos. Mater. by S Osinin (1966)
  28. Cola, B. A. et al. Photoacoustic characterization of carbon nanotube array thermal interfaces. J. Appl. Phys. 101, 054313 (2007). (10.1063/1.2510998) / J. Appl. Phys. by BA Cola (2007)
  29. Mohammad, F., Calvert, P. D. & Billingham, N. C. Thermal stability of electrochemically prepared polythiophene and polypyrrole. Bull. Mater. Sci. 18, 255–261 (1995). (10.1007/BF02749663) / Bull. Mater. Sci. by F Mohammad (1995)
  30. Otiaba, K. et al. Thermal interface materials for automotive electronic control unit: trends, technology and R&D challenges. Microelectron. Reliab. 51, 2031–2043 (2011). (10.1016/j.microrel.2011.05.001) / Microelectron. Reliab. by K Otiaba (2011)
  31. Cahill, D. G. & Pohl, R. O. Heat flow and lattice vibrations in glasses. Solid State Commun. 70, 927–930 (1989). (10.1016/0038-1098(89)90630-3) / Solid State Commun. by DG Cahill (1989)
  32. Choy, C. L., Tong, K. W., Wong, H. K. & Leung, W. P. Thermal conductivity of amorphous alloys above room temperature. J. Appl. Phys. 70, 4919–4925 (1991). (10.1063/1.349037) / J. Appl. Phys. by CL Choy (1991)
  33. Taphouse, J. H. et al. Carbon nanotube thermal interfaces enhanced with sprayed on nanoscale polymer coatings. Nanotechnology 24, 105401 (2013). (10.1088/0957-4484/24/10/105401) / Nanotechnology by JH Taphouse (2013)
  34. Taphouse, J. H., Smith, O. N. L., Marder, S. R. & Cola, B. A. A pyrenylpropyl phosphonic acid surface modifier for mitigating the thermal resistance of carbon nanotube contacts. Adv. Funct. Mater. 24, 465–471 (2014). (10.1002/adfm.201301714) / Adv. Funct. Mater. by JH Taphouse (2014)
Dates
Type When
Created 11 years, 4 months ago (March 28, 2014, 12:10 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 7:42 p.m.)
Indexed 1 week, 1 day ago (Aug. 12, 2025, 6:15 p.m.)
Issued 11 years, 4 months ago (March 30, 2014)
Published 11 years, 4 months ago (March 30, 2014)
Published Online 11 years, 4 months ago (March 30, 2014)
Published Print 11 years, 3 months ago (May 1, 2014)
Funders 0

None

@article{Singh_2014, title={High thermal conductivity of chain-oriented amorphous polythiophene}, volume={9}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2014.44}, DOI={10.1038/nnano.2014.44}, number={5}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Singh, Virendra and Bougher, Thomas L. and Weathers, Annie and Cai, Ye and Bi, Kedong and Pettes, Michael T. and McMenamin, Sally A. and Lv, Wei and Resler, Daniel P. and Gattuso, Todd R. and Altman, David H. and Sandhage, Kenneth H. and Shi, Li and Henry, Asegun and Cola, Baratunde A.}, year={2014}, month=mar, pages={384–390} }