Crossref journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Bibliography

Li, L., Yu, Y., Ye, G. J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X. H., & Zhang, Y. (2014). Black phosphorus field-effect transistors. Nature Nanotechnology, 9(5), 372–377.

Authors 9
  1. Likai Li (first)
  2. Yijun Yu (additional)
  3. Guo Jun Ye (additional)
  4. Qingqin Ge (additional)
  5. Xuedong Ou (additional)
  6. Hua Wu (additional)
  7. Donglai Feng (additional)
  8. Xian Hui Chen (additional)
  9. Yuanbo Zhang (additional)
References 38 Referenced 7,662
  1. Delhaès, P. Graphite and Precursors (Gordon & Breach Science, 2001). / Graphite and Precursors by P Delhaès (2001)
  2. Brown, A. & Rundqvist, S. Refinement of the crystal structure of black phosphorus. Acta Crystallogr. 19, 684–685 (1965). (10.1107/S0365110X65004140) / Acta Crystallogr. by A Brown (1965)
  3. Slater, J. C., Koster, G. F. & Wood, J. H. Symmetry and free electron properties of the gallium energy bands. Phys. Rev. 126, 1307–1317 (1962). (10.1103/PhysRev.126.1307) / Phys. Rev. by JC Slater (1962)
  4. Cartz, L., Srinivasa, S. R., Riedner, R. J., Jorgensen, J. D. & Worlton, T. G. Effect of pressure on bonding in black phosphorus. J. Chem. Phys. 71, 1718–1721 (1979). (10.1063/1.438523) / J. Chem. Phys. by L Cartz (1979)
  5. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). (10.1126/science.1102896) / Science by KS Novoselov (2004)
  6. Berger, C. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004). (10.1021/jp040650f) / J. Phys. Chem. B by C Berger (2004)
  7. Takao, Y. & Morita, A. Electronic structure of black phosphorus: tight binding approach. Physica B&C 105, 93–98 (1981). (10.1016/0378-4363(81)90222-9) / Physica B&C by Y Takao (1981)
  8. Keyes, R. W. The electrical properties of black phosphorus. Phys. Rev. 92, 580–584 (1953). (10.1103/PhysRev.92.580) / Phys. Rev. by RW Keyes (1953)
  9. Warschauer, D. Electrical and optical properties of crystalline black phosphorus. J. Appl. Phys. 34, 1853–1860 (1963). (10.1063/1.1729699) / J. Appl. Phys. by D Warschauer (1963)
  10. Maruyama, Y., Suzuki, S., Kobayashi, K. & Tanuma, S. Synthesis and some properties of black phosphorus single crystals. Physica B&C 105, 99–102 (1981). (10.1016/0378-4363(81)90223-0) / Physica B&C by Y Maruyama (1981)
  11. Akahama, Y., Endo, S. & Narita, S. Electrical properties of black phosphorus single crystals. J. Phys. Soc. Jpn 52, 2148–2155 (1983). (10.1143/JPSJ.52.2148) / J. Phys. Soc. Jpn by Y Akahama (1983)
  12. Rodin, A. S., Carvalho, A. & Neto, A. H. C. Strain-induced gap modification in black phosphorus. Preprint at http://arxiv.org/abs/1401.1801 (2014). (10.1103/PhysRevLett.112.176801)
  13. Asahina, H., Shindo, K. & Morita, A. Electronic structure of black phosphorus in self-consistent pseudopotential approach. J. Phys. Soc. Jpn 51, 1193–1199 (1982). (10.1143/JPSJ.51.1193) / J. Phys. Soc. Jpn by H Asahina (1982)
  14. Jamieson, J. C. Crystal structures adopted by black phosphorus at high pressures. Science 139, 1291–1292 (1963). (10.1126/science.139.3561.1291) / Science by JC Jamieson (1963)
  15. Vanderborgh, C. A. & Schiferl, D. Raman studies of black phosphorus from 0.25 to 7.7 GPa at 15 K. Phys. Rev. B 40, 9595–9599 (1989). (10.1103/PhysRevB.40.9595) / Phys. Rev. B by CA Vanderborgh (1989)
  16. Kawamura, H., Shirotani, I. & Tachikawa, K. Anomalous superconductivity in black phosphorus under high pressures. Solid State Commun. 49, 879–881 (1984). (10.1016/0038-1098(84)90444-7) / Solid State Commun. by H Kawamura (1984)
  17. Wittig, J. & Matthias, B. T. Superconducting phosphorus. Science 160, 994–995 (1968). (10.1126/science.160.3831.994) / Science by J Wittig (1968)
  18. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011). (10.1038/nnano.2010.279) / Nature Nanotech. by B Radisavljevic (2011)
  19. Radisavljevic, B. & Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2 . Nature Mater. 12, 815–820 (2013). (10.1038/nmat3687) / Nature Mater. by B Radisavljevic (2013)
  20. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003). (10.1063/1.1564060) / J. Chem. Phys. by J Heyd (2003)
  21. Heyd, J., Peralta, J. E., Scuseria, G. E. & Martin, R. L. Energy band gaps and lattice parameters evaluated with the Heyd–Scuseria–Ernzerhof screened hybrid functional. J. Chem. Phys. 123, 174101 (2005). (10.1063/1.2085170) / J. Chem. Phys. by J Heyd (2005)
  22. Marsman, M., Paier, J., Stroppa, A. & Kresse, G. Hybrid functionals applied to extended systems. J. Phys. 20, 064201 (2008). / J. Phys. by M Marsman (2008)
  23. Schwierz, F. Graphene transistors. Nature Nanotech. 5, 487–496 (2010). (10.1038/nnano.2010.89) / Nature Nanotech. by F Schwierz (2010)
  24. Liu, H., Neal, A. T. & Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 6, 8563–8569 (2012). (10.1021/nn303513c) / ACS Nano by H Liu (2012)
  25. Das, S., Chen, H-Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013). (10.1021/nl303583v) / Nano Lett. by S Das (2013)
  26. Knoch, J., Zhang, M., Appenzeller, J. & Mantl, S. Physics of ultrathin-body silicon-on-insulator Schottky-barrier field-effect transistors. Appl. Phys. A 87, 351–357 (2007). (10.1007/s00339-007-3868-1) / Appl. Phys. A by J Knoch (2007)
  27. Fontana, M. et al. Electron–hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Sci. Rep. 3, 1634 (2013). (10.1038/srep01634) / Sci. Rep. by M Fontana (2013)
  28. Schroder, D. K. Semiconductor Material and Device Characterization (Wiley, 2006). / Semiconductor Material and Device Characterization by DK Schroder (2006)
  29. Chen, J-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2 . Nature Nanotech. 3, 206–209 (2008). (10.1038/nnano.2008.58) / Nature Nanotech. by J-H Chen (2008)
  30. Chen, F., Xia, J., Ferry, D. K. & Tao, N. Dielectric screening enhanced performance in graphene FET. Nano Lett. 9, 2571–2574 (2009). (10.1021/nl900725u) / Nano Lett. by F Chen (2009)
  31. Morozov, S. V. et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008). (10.1103/PhysRevLett.100.016602) / Phys. Rev. Lett. by SV Morozov (2008)
  32. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2006). (10.1002/0470068329) / Physics of Semiconductor Devices by SM Sze (2006)
  33. Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012). (10.1103/PhysRevB.85.115317) / Phys. Rev. B by K Kaasbjerg (2012)
  34. Petaccia, L. et al. BaDElPh: A normal-incidence monochromator beamline at Elettra. Nucl. Instrum. Methods 606, 780–784 (2009). (10.1016/j.nima.2009.05.001) / Nucl. Instrum. Methods by L Petaccia (2009)
  35. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). (10.1103/PhysRevB.50.17953) / Phys. Rev. B by PE Blöchl (1994)
  36. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). (10.1103/PhysRevB.59.1758) / Phys. Rev. B by G Kresse (1999)
  37. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). (10.1103/PhysRevB.54.11169) / Phys. Rev. B by G Kresse (1996)
  38. Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006). (10.1063/1.2404663) / J. Chem. Phys. by AV Krukau (2006)
Dates
Type When
Created 11 years, 5 months ago (March 2, 2014, 1:55 p.m.)
Deposited 3 years, 10 months ago (Sept. 22, 2021, 8:03 a.m.)
Indexed 46 minutes ago (Aug. 21, 2025, 12:48 p.m.)
Issued 11 years, 5 months ago (March 2, 2014)
Published 11 years, 5 months ago (March 2, 2014)
Published Online 11 years, 5 months ago (March 2, 2014)
Published Print 11 years, 3 months ago (May 1, 2014)
Funders 0

None

@article{Li_2014, title={Black phosphorus field-effect transistors}, volume={9}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2014.35}, DOI={10.1038/nnano.2014.35}, number={5}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Li, Likai and Yu, Yijun and Ye, Guo Jun and Ge, Qingqin and Ou, Xuedong and Wu, Hua and Feng, Donglai and Chen, Xian Hui and Zhang, Yuanbo}, year={2014}, month=mar, pages={372–377} }