Crossref journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Bibliography

Zheng, G., Lee, S. W., Liang, Z., Lee, H.-W., Yan, K., Yao, H., Wang, H., Li, W., Chu, S., & Cui, Y. (2014). Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nature Nanotechnology, 9(8), 618–623.

Authors 10
  1. Guangyuan Zheng (first)
  2. Seok Woo Lee (additional)
  3. Zheng Liang (additional)
  4. Hyun-Wook Lee (additional)
  5. Kai Yan (additional)
  6. Hongbin Yao (additional)
  7. Haotian Wang (additional)
  8. Weiyang Li (additional)
  9. Steven Chu (additional)
  10. Yi Cui (additional)
References 45 Referenced 1,650
  1. Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 192, 1126–1127 (1976). (10.1126/science.192.4244.1126) / Science by MS Whittingham (1976)
  2. Ohzuku, T., Iwakoshi, Y. & Sawai, K. Formation of lithium–graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell. J. Electrochem. Soc. 140, 2490–2498 (1993). (10.1149/1.2220849) / J. Electrochem. Soc. by T Ohzuku (1993)
  3. Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotech. 3, 31–35 (2008). (10.1038/nnano.2007.411) / Nature Nanotech. by CK Chan (2008)
  4. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). (10.1038/35104644) / Nature by JM Tarascon (2001)
  5. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008). (10.1038/451652a) / Nature by M Armand (2008)
  6. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J. M. Li–O2 and Li–S batteries with high energy storage. Nature Mater. 11, 19–29 (2012). (10.1038/nmat3191) / Nature Mater. by PG Bruce (2012)
  7. Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979). (10.1149/1.2128859) / J. Electrochem. Soc. by E Peled (1979)
  8. Aurbach, D. et al. Attempts to improve the behavior of Li electrodes in rechargeable lithium batteries J. Electrochem. Soc. 150, L6 (2003). (10.1149/1.1554419) / J. Electrochem. Soc. by D Aurbach (2003)
  9. Ota, H. et al. Characterization of lithium electrode in lithium imides/ethylene carbonate and cyclic ether electrolytes: II. Surface chemistry. J. Electrochem. Soc. 151, A437–A446 (2004). (10.1149/1.1644137) / J. Electrochem. Soc. by H Ota (2004)
  10. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004). (10.1021/cr030203g) / Chem. Rev. by K Xu (2004)
  11. Bhattacharyya, R. et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nature Mater. 9, 504–510 (2010). (10.1038/nmat2764) / Nature Mater. by R Bhattacharyya (2010)
  12. Chandrashekar, S. et al. 7Li MRI of Li batteries reveals location of microstructural lithium. Nature Mater. 11, 311–315 (2012). (10.1038/nmat3246) / Nature Mater. by S Chandrashekar (2012)
  13. Harry, K. J. et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nature Mater. 13, 69–73 (2013). (10.1038/nmat3793) / Nature Mater. by KJ Harry (2013)
  14. Von Sacken, U., Nodwell, E., Sundher, A. & Dahn, J. R. Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries. J. Power Sources 54, 240–245 (1995). (10.1016/0378-7753(94)02076-F) / J. Power Sources by U Von Sacken (1995)
  15. Chazalviel, J. N. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42, 7355–7367 (1990). (10.1103/PhysRevA.42.7355) / Phys. Rev. A by JN Chazalviel (1990)
  16. Rosso, M. et al. Onset of dendritic growth in lithium/polymer cells. J. Power Sources 97-98, 804–806 (2001). (10.1016/S0378-7753(01)00734-0) / J. Power Sources by M Rosso (2001)
  17. Yu, X., Bates, J. B., Jellison, G. E. & Hart, F. X. A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J. Electrochem. Soc. 144, 524–532 (1997). (10.1149/1.1837443) / J. Electrochem. Soc. by X Yu (1997)
  18. Nimon, Y. S., Chu, M-Y. & Visco, S. J. Coated lithium electrodes. US patent US6537701 B1 (2003).
  19. Kamaya, N. et al. A lithium superionic conductor. Nature Mater. 10, 682–686 (2011). (10.1038/nmat3066) / Nature Mater. by N Kamaya (2011)
  20. Stone, G. M. et al. Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries. J. Electrochem. Soc. 159, A222–A227 (2012). (10.1149/2.030203jes) / J. Electrochem. Soc. by GM Stone (2012)
  21. Croce, F., Persi, L., Ronci, F. & Scrosati, B. Nanocomposite polymer electrolytes and their impact on the lithium battery technology. Solid State Ionics 135, 47–52 (2000). (10.1016/S0167-2738(00)00329-5) / Solid State Ionics by F Croce (2000)
  22. Zaghib, K. Lithium metal vs. Li-ion batteries: challenges and opportunities. ECS Meeting Abstracts MA2013-02, 952 (2013). (10.1149/MA2013-02/14/952) / ECS Meeting Abstracts by K Zaghib (2013)
  23. Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12 . Angew. Chem. Int. Ed. 46, 7778–7781 (2007). (10.1002/anie.200701144) / Angew. Chem. Int. Ed. by R Murugan (2007)
  24. Thangadurai, V., Narayanan, S. & Pinzaru, D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43, 4714–4727 (2014). (10.1039/c4cs00020j) / Chem. Soc. Rev. by V Thangadurai (2014)
  25. Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014). (10.1039/C3EE40795K) / Energy Environ. Sci. by W Xu (2014)
  26. Kim, K. H. et al. Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery. J. Power Sources 196, 764–767 (2011). (10.1016/j.jpowsour.2010.07.073) / J. Power Sources by KH Kim (2011)
  27. Crowther, O. & West, A. C. Effect of electrolyte composition on lithium dendrite growth. J. Electrochem. Soc. 155, A806–A811 (2008). (10.1149/1.2969424) / J. Electrochem. Soc. by O Crowther (2008)
  28. Hirai, T., Yoshimatsu, I. & Yamaki, J-I. Effect of additives on lithium cycling efficiency. J. Electrochem. Soc. 141, 2300–2305 (1994). (10.1149/1.2055116) / J. Electrochem. Soc. by T Hirai (1994)
  29. Ding, F. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013). (10.1021/ja312241y) / J. Am. Chem. Soc. by F Ding (2013)
  30. Marchioni, F. et al. Protection of lithium metal surfaces using chlorosilanes. Langmuir 23, 11597–11602 (2007). (10.1021/la701662r) / Langmuir by F Marchioni (2007)
  31. Ishikawa, M., Kawasaki, H., Yoshimoto, N. & Morita, M. Pretreatment of Li metal anode with electrolyte additive for enhancing Li cycleability. J. Power Sources 146, 199–203 (2005). (10.1016/j.jpowsour.2005.03.007) / J. Power Sources by M Ishikawa (2005)
  32. Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148, 405–416 (2002). (10.1016/S0167-2738(02)00080-2) / Solid State Ionics by D Aurbach (2002)
  33. Gireaud, L. et al. Lithium metal stripping/plating mechanisms studies: a metallurgical approach. Electrochem. Commun. 8, 1639–1649 (2006). (10.1016/j.elecom.2006.07.037) / Electrochem. Commun. by L Gireaud (2006)
  34. Suk, J. W., Murali, S., An, J. & Ruoff, R. S. Mechanical measurements of ultra-thin amorphous carbon membranes using scanning atomic force microscopy. Carbon 50, 2220–2225 (2012). (10.1016/j.carbon.2012.01.037) / Carbon by JW Suk (2012)
  35. Xia, Y., Gates, B., Yin, Y. & Lu, Y. Monodispersed colloidal spheres: old materials with new applications. Adv. Mater. 12, 693–713 (2000). (10.1002/(SICI)1521-4095(200005)12:10<693::AID-ADMA693>3.0.CO;2-J) / Adv. Mater. by Y Xia (2000)
  36. Larson, D. M., Downing, K. H. & Glaeser, R. M. The surface of evaporated carbon films is an insulating, high-bandgap material. J. Struct. Biol. 174, 420–423 (2011). (10.1016/j.jsb.2011.02.005) / J. Struct. Biol. by DM Larson (2011)
  37. Blue, M. D. & Danielson, G. C. Electrical properties of arc-evaporated carbon films. J. Appl. Phys. 28, 583–586 (1957). (10.1063/1.1722807) / J. Appl. Phys. by MD Blue (1957)
  38. Arie, A. A. & Lee, J. K. Electrochemical characteristics of lithium metal anodes with diamond like carbon film coating layer. Diamond Relat. Mater. 20, 403–408 (2011). (10.1016/j.diamond.2011.01.040) / Diamond Relat. Mater. by AA Arie (2011)
  39. Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010). (10.1126/science.1195628) / Science by JY Huang (2010)
  40. McDowell, M. T. et al. In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 13, 758–764 (2013). (10.1021/nl3044508) / Nano Lett. by MT McDowell (2013)
  41. Aurbach, D., Zinigrad, E., Teller, H. & Dan, P. Factors which limit the cycle life of rechargeable lithium (metal) batteries. J. Electrochem. Soc. 147, 1274–1279 (2000). (10.1149/1.1393349) / J. Electrochem. Soc. by D Aurbach (2000)
  42. Aurbach, D., Gofer, Y. & Langzam, J. The correlation between surface chemistry, surface morphology, and cycling efficiency of lithium electrodes in a few polar aprotic systems. J. Electrochem. Soc. 136, 3198–3205 (1989). (10.1149/1.2096425) / J. Electrochem. Soc. by D Aurbach (1989)
  43. Gofer, Y., Ben-Zion, M. & Aurbach, D. Solutions of LiAsF6 in 1,3-dioxolane for secondary lithium batteries. J. Power Sources 39, 163–178 (1992). (10.1016/0378-7753(92)80135-X) / J. Power Sources by Y Gofer (1992)
  44. Koch, V. R., Goldman, J. L., Mattos, C. J. & Mulvaney, M. Specular lithium deposits from lithium hexafluoroarsenate/diethyl ether electrolytes. J. Electrochem. Soc. 129, 1–4 (1982). (10.1149/1.2123756) / J. Electrochem. Soc. by VR Koch (1982)
  45. Shimmin, R. G., DiMauro, A. J. & Braun, P. V. Slow vertical deposition of colloidal crystals: a Langmuir–Blodgett process? Langmuir 22, 6507–6513 (2006). (10.1021/la060278q) / Langmuir by RG Shimmin (2006)
Dates
Type When
Created 11 years ago (July 27, 2014, 1:45 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 7:40 p.m.)
Indexed 5 hours, 21 minutes ago (Aug. 23, 2025, 1:10 a.m.)
Issued 11 years ago (July 27, 2014)
Published 11 years ago (July 27, 2014)
Published Online 11 years ago (July 27, 2014)
Published Print 11 years ago (Aug. 1, 2014)
Funders 0

None

@article{Zheng_2014, title={Interconnected hollow carbon nanospheres for stable lithium metal anodes}, volume={9}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2014.152}, DOI={10.1038/nnano.2014.152}, number={8}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Zheng, Guangyuan and Lee, Seok Woo and Liang, Zheng and Lee, Hyun-Wook and Yan, Kai and Yao, Hongbin and Wang, Haotian and Li, Weiyang and Chu, Steven and Cui, Yi}, year={2014}, month=jul, pages={618–623} }