Crossref
journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Authors
10
- Guangyuan Zheng (first)
- Seok Woo Lee (additional)
- Zheng Liang (additional)
- Hyun-Wook Lee (additional)
- Kai Yan (additional)
- Hongbin Yao (additional)
- Haotian Wang (additional)
- Weiyang Li (additional)
- Steven Chu (additional)
- Yi Cui (additional)
References
45
Referenced
1,650
-
Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 192, 1126–1127 (1976).
(
10.1126/science.192.4244.1126
) / Science by MS Whittingham (1976) -
Ohzuku, T., Iwakoshi, Y. & Sawai, K. Formation of lithium–graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell. J. Electrochem. Soc. 140, 2490–2498 (1993).
(
10.1149/1.2220849
) / J. Electrochem. Soc. by T Ohzuku (1993) -
Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotech. 3, 31–35 (2008).
(
10.1038/nnano.2007.411
) / Nature Nanotech. by CK Chan (2008) -
Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).
(
10.1038/35104644
) / Nature by JM Tarascon (2001) -
Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).
(
10.1038/451652a
) / Nature by M Armand (2008) -
Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J. M. Li–O2 and Li–S batteries with high energy storage. Nature Mater. 11, 19–29 (2012).
(
10.1038/nmat3191
) / Nature Mater. by PG Bruce (2012) -
Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979).
(
10.1149/1.2128859
) / J. Electrochem. Soc. by E Peled (1979) -
Aurbach, D. et al. Attempts to improve the behavior of Li electrodes in rechargeable lithium batteries J. Electrochem. Soc. 150, L6 (2003).
(
10.1149/1.1554419
) / J. Electrochem. Soc. by D Aurbach (2003) -
Ota, H. et al. Characterization of lithium electrode in lithium imides/ethylene carbonate and cyclic ether electrolytes: II. Surface chemistry. J. Electrochem. Soc. 151, A437–A446 (2004).
(
10.1149/1.1644137
) / J. Electrochem. Soc. by H Ota (2004) -
Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).
(
10.1021/cr030203g
) / Chem. Rev. by K Xu (2004) -
Bhattacharyya, R. et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nature Mater. 9, 504–510 (2010).
(
10.1038/nmat2764
) / Nature Mater. by R Bhattacharyya (2010) -
Chandrashekar, S. et al. 7Li MRI of Li batteries reveals location of microstructural lithium. Nature Mater. 11, 311–315 (2012).
(
10.1038/nmat3246
) / Nature Mater. by S Chandrashekar (2012) -
Harry, K. J. et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nature Mater. 13, 69–73 (2013).
(
10.1038/nmat3793
) / Nature Mater. by KJ Harry (2013) -
Von Sacken, U., Nodwell, E., Sundher, A. & Dahn, J. R. Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries. J. Power Sources 54, 240–245 (1995).
(
10.1016/0378-7753(94)02076-F
) / J. Power Sources by U Von Sacken (1995) -
Chazalviel, J. N. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42, 7355–7367 (1990).
(
10.1103/PhysRevA.42.7355
) / Phys. Rev. A by JN Chazalviel (1990) -
Rosso, M. et al. Onset of dendritic growth in lithium/polymer cells. J. Power Sources 97-98, 804–806 (2001).
(
10.1016/S0378-7753(01)00734-0
) / J. Power Sources by M Rosso (2001) -
Yu, X., Bates, J. B., Jellison, G. E. & Hart, F. X. A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J. Electrochem. Soc. 144, 524–532 (1997).
(
10.1149/1.1837443
) / J. Electrochem. Soc. by X Yu (1997) - Nimon, Y. S., Chu, M-Y. & Visco, S. J. Coated lithium electrodes. US patent US6537701 B1 (2003).
-
Kamaya, N. et al. A lithium superionic conductor. Nature Mater. 10, 682–686 (2011).
(
10.1038/nmat3066
) / Nature Mater. by N Kamaya (2011) -
Stone, G. M. et al. Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries. J. Electrochem. Soc. 159, A222–A227 (2012).
(
10.1149/2.030203jes
) / J. Electrochem. Soc. by GM Stone (2012) -
Croce, F., Persi, L., Ronci, F. & Scrosati, B. Nanocomposite polymer electrolytes and their impact on the lithium battery technology. Solid State Ionics 135, 47–52 (2000).
(
10.1016/S0167-2738(00)00329-5
) / Solid State Ionics by F Croce (2000) -
Zaghib, K. Lithium metal vs. Li-ion batteries: challenges and opportunities. ECS Meeting Abstracts MA2013-02, 952 (2013).
(
10.1149/MA2013-02/14/952
) / ECS Meeting Abstracts by K Zaghib (2013) -
Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12 . Angew. Chem. Int. Ed. 46, 7778–7781 (2007).
(
10.1002/anie.200701144
) / Angew. Chem. Int. Ed. by R Murugan (2007) -
Thangadurai, V., Narayanan, S. & Pinzaru, D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43, 4714–4727 (2014).
(
10.1039/c4cs00020j
) / Chem. Soc. Rev. by V Thangadurai (2014) -
Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014).
(
10.1039/C3EE40795K
) / Energy Environ. Sci. by W Xu (2014) -
Kim, K. H. et al. Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery. J. Power Sources 196, 764–767 (2011).
(
10.1016/j.jpowsour.2010.07.073
) / J. Power Sources by KH Kim (2011) -
Crowther, O. & West, A. C. Effect of electrolyte composition on lithium dendrite growth. J. Electrochem. Soc. 155, A806–A811 (2008).
(
10.1149/1.2969424
) / J. Electrochem. Soc. by O Crowther (2008) -
Hirai, T., Yoshimatsu, I. & Yamaki, J-I. Effect of additives on lithium cycling efficiency. J. Electrochem. Soc. 141, 2300–2305 (1994).
(
10.1149/1.2055116
) / J. Electrochem. Soc. by T Hirai (1994) -
Ding, F. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013).
(
10.1021/ja312241y
) / J. Am. Chem. Soc. by F Ding (2013) -
Marchioni, F. et al. Protection of lithium metal surfaces using chlorosilanes. Langmuir 23, 11597–11602 (2007).
(
10.1021/la701662r
) / Langmuir by F Marchioni (2007) -
Ishikawa, M., Kawasaki, H., Yoshimoto, N. & Morita, M. Pretreatment of Li metal anode with electrolyte additive for enhancing Li cycleability. J. Power Sources 146, 199–203 (2005).
(
10.1016/j.jpowsour.2005.03.007
) / J. Power Sources by M Ishikawa (2005) -
Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148, 405–416 (2002).
(
10.1016/S0167-2738(02)00080-2
) / Solid State Ionics by D Aurbach (2002) -
Gireaud, L. et al. Lithium metal stripping/plating mechanisms studies: a metallurgical approach. Electrochem. Commun. 8, 1639–1649 (2006).
(
10.1016/j.elecom.2006.07.037
) / Electrochem. Commun. by L Gireaud (2006) -
Suk, J. W., Murali, S., An, J. & Ruoff, R. S. Mechanical measurements of ultra-thin amorphous carbon membranes using scanning atomic force microscopy. Carbon 50, 2220–2225 (2012).
(
10.1016/j.carbon.2012.01.037
) / Carbon by JW Suk (2012) -
Xia, Y., Gates, B., Yin, Y. & Lu, Y. Monodispersed colloidal spheres: old materials with new applications. Adv. Mater. 12, 693–713 (2000).
(
10.1002/(SICI)1521-4095(200005)12:10<693::AID-ADMA693>3.0.CO;2-J
) / Adv. Mater. by Y Xia (2000) -
Larson, D. M., Downing, K. H. & Glaeser, R. M. The surface of evaporated carbon films is an insulating, high-bandgap material. J. Struct. Biol. 174, 420–423 (2011).
(
10.1016/j.jsb.2011.02.005
) / J. Struct. Biol. by DM Larson (2011) -
Blue, M. D. & Danielson, G. C. Electrical properties of arc-evaporated carbon films. J. Appl. Phys. 28, 583–586 (1957).
(
10.1063/1.1722807
) / J. Appl. Phys. by MD Blue (1957) -
Arie, A. A. & Lee, J. K. Electrochemical characteristics of lithium metal anodes with diamond like carbon film coating layer. Diamond Relat. Mater. 20, 403–408 (2011).
(
10.1016/j.diamond.2011.01.040
) / Diamond Relat. Mater. by AA Arie (2011) -
Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010).
(
10.1126/science.1195628
) / Science by JY Huang (2010) -
McDowell, M. T. et al. In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 13, 758–764 (2013).
(
10.1021/nl3044508
) / Nano Lett. by MT McDowell (2013) -
Aurbach, D., Zinigrad, E., Teller, H. & Dan, P. Factors which limit the cycle life of rechargeable lithium (metal) batteries. J. Electrochem. Soc. 147, 1274–1279 (2000).
(
10.1149/1.1393349
) / J. Electrochem. Soc. by D Aurbach (2000) -
Aurbach, D., Gofer, Y. & Langzam, J. The correlation between surface chemistry, surface morphology, and cycling efficiency of lithium electrodes in a few polar aprotic systems. J. Electrochem. Soc. 136, 3198–3205 (1989).
(
10.1149/1.2096425
) / J. Electrochem. Soc. by D Aurbach (1989) -
Gofer, Y., Ben-Zion, M. & Aurbach, D. Solutions of LiAsF6 in 1,3-dioxolane for secondary lithium batteries. J. Power Sources 39, 163–178 (1992).
(
10.1016/0378-7753(92)80135-X
) / J. Power Sources by Y Gofer (1992) -
Koch, V. R., Goldman, J. L., Mattos, C. J. & Mulvaney, M. Specular lithium deposits from lithium hexafluoroarsenate/diethyl ether electrolytes. J. Electrochem. Soc. 129, 1–4 (1982).
(
10.1149/1.2123756
) / J. Electrochem. Soc. by VR Koch (1982) -
Shimmin, R. G., DiMauro, A. J. & Braun, P. V. Slow vertical deposition of colloidal crystals: a Langmuir–Blodgett process? Langmuir 22, 6507–6513 (2006).
(
10.1021/la060278q
) / Langmuir by RG Shimmin (2006)
Dates
Type | When |
---|---|
Created | 11 years ago (July 27, 2014, 1:45 p.m.) |
Deposited | 2 years, 3 months ago (May 18, 2023, 7:40 p.m.) |
Indexed | 5 hours, 21 minutes ago (Aug. 23, 2025, 1:10 a.m.) |
Issued | 11 years ago (July 27, 2014) |
Published | 11 years ago (July 27, 2014) |
Published Online | 11 years ago (July 27, 2014) |
Published Print | 11 years ago (Aug. 1, 2014) |
@article{Zheng_2014, title={Interconnected hollow carbon nanospheres for stable lithium metal anodes}, volume={9}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2014.152}, DOI={10.1038/nnano.2014.152}, number={8}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Zheng, Guangyuan and Lee, Seok Woo and Liang, Zheng and Lee, Hyun-Wook and Yan, Kai and Yao, Hongbin and Wang, Haotian and Li, Weiyang and Chu, Steven and Cui, Yi}, year={2014}, month=jul, pages={618–623} }