Crossref journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Bibliography

Georgiou, T., Jalil, R., Belle, B. D., Britnell, L., Gorbachev, R. V., Morozov, S. V., Kim, Y.-J., Gholinia, A., Haigh, S. J., Makarovsky, O., Eaves, L., Ponomarenko, L. A., Geim, A. K., Novoselov, K. S., & Mishchenko, A. (2012). Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nature Nanotechnology, 8(2), 100–103.

Authors 15
  1. Thanasis Georgiou (first)
  2. Rashid Jalil (additional)
  3. Branson D. Belle (additional)
  4. Liam Britnell (additional)
  5. Roman V. Gorbachev (additional)
  6. Sergey V. Morozov (additional)
  7. Yong-Jin Kim (additional)
  8. Ali Gholinia (additional)
  9. Sarah J. Haigh (additional)
  10. Oleg Makarovsky (additional)
  11. Laurence Eaves (additional)
  12. Leonid A. Ponomarenko (additional)
  13. Andre K. Geim (additional)
  14. Kostya S. Novoselov (additional)
  15. Artem Mishchenko (additional)
References 25 Referenced 1,581
  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). (10.1126/science.1102896) / Science by KS Novoselov (2004)
  2. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009). (10.1103/RevModPhys.81.109) / Rev. Mod. Phys. by AH Castro Neto (2009)
  3. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005). (10.1073/pnas.0502848102) / Proc. Natl Acad. Sci. USA by KS Novoselov (2005)
  4. Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009). (10.1126/science.1158877) / Science by AK Geim (2009)
  5. Haigh, S. J. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nature Mater. 11, 1–4 (2012). (10.1038/nmat3386) / Nature Mater. by SJ Haigh (2012)
  6. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010). (10.1038/nnano.2010.172) / Nature Nanotech. by CR Dean (2010)
  7. Novoselov, K. S. Nobel lecture: Graphene: materials in the flatland. Rev. Mod. Phys. 83, 837–849 (2011). (10.1103/RevModPhys.83.837) / Rev. Mod. Phys. by KS Novoselov (2011)
  8. Ponomarenko, L. A. et al. Tunable metal–insulator transition in double-layer graphene heterostructures. Nature Phys. 7, 958–961 (2011). (10.1038/nphys2114) / Nature Phys. by LA Ponomarenko (2011)
  9. Gorbachev, R. V. et al. Strong Coulomb drag and broken symmetry in double-layer graphene. Nature Phys. 8, 896–901 (2012). (10.1038/nphys2441) / Nature Phys. by RV Gorbachev (2012)
  10. Kim, S. et al. Coulomb drag of massless fermions in graphene. Phys. Rev. B 83, 161401 (2011). (10.1103/PhysRevB.83.161401) / Phys. Rev. B by S Kim (2011)
  11. Britnell, L. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12, 1707–1710 (2012). (10.1021/nl3002205) / Nano Lett. by L Britnell (2012)
  12. Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012). (10.1126/science.1218461) / Science by L Britnell (2012)
  13. Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011). (10.1126/science.1194975) / Science by JN Coleman (2011)
  14. Gorbachev, R. V. et al. Hunting for monolayer boron nitride: optical and Raman signatures. Small 7, 465–468 (2011). (10.1002/smll.201001628) / Small by RV Gorbachev (2011)
  15. Yang, H. et al. Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science 336, 1140–1143 (2012). (10.1126/science.1220527) / Science by H Yang (2012)
  16. Kuc, A., Zibouche, N. & Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2 . Phys. Rev. B 83, 245213 (2011). (10.1103/PhysRevB.83.245213) / Phys. Rev. B by A Kuc (2011)
  17. Sliney, H. E. Solid lubricant materials for high temperatures—a review. Tribol. Int. 15, 303–315 (1982). (10.1016/0301-679X(82)90089-5) / Tribol. Int. by HE Sliney (1982)
  18. Simmons, J. G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793–1803 (1963). (10.1063/1.1702682) / J. Appl. Phys. by JG Simmons (1963)
  19. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008). (10.1126/science.1156965) / Science by RR Nair (2008)
  20. Blake, P. et al. Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007). (10.1063/1.2768624) / Appl. Phys. Lett. by P Blake (2007)
  21. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). (10.1126/science.1157996) / Science by C Lee (2008)
  22. Castellanos-Gomez, A., Agraït, N. & Rubio-Bollinger, G. Optical identification of atomically thin dichalcogenide crystals. Appl. Phys. Lett. 96, 213116 (2010). (10.1063/1.3442495) / Appl. Phys. Lett. by A Castellanos-Gomez (2010)
  23. Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2 . ACS Nano 5, 9703–9709 (2011). (10.1021/nn203879f) / ACS Nano by S Bertolazzi (2011)
  24. Andrew, R., Mapasha, R., Ukpong, A. & Chetty, N. Mechanical properties of graphene and boronitrene. Phys. Rev. B 85, 125428 (2012). (10.1103/PhysRevB.85.125428) / Phys. Rev. B by R Andrew (2012)
  25. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 5, 574–578 (2010). (10.1038/nnano.2010.132) / Nature Nanotech. by S Bae (2010)
Dates
Type When
Created 12 years, 7 months ago (Dec. 23, 2012, 3:09 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 8:24 p.m.)
Indexed 3 days, 3 hours ago (Aug. 19, 2025, 6:44 a.m.)
Issued 12 years, 7 months ago (Dec. 23, 2012)
Published 12 years, 7 months ago (Dec. 23, 2012)
Published Online 12 years, 7 months ago (Dec. 23, 2012)
Published Print 12 years, 6 months ago (Feb. 1, 2013)
Funders 0

None

@article{Georgiou_2012, title={Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics}, volume={8}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2012.224}, DOI={10.1038/nnano.2012.224}, number={2}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Georgiou, Thanasis and Jalil, Rashid and Belle, Branson D. and Britnell, Liam and Gorbachev, Roman V. and Morozov, Sergey V. and Kim, Yong-Jin and Gholinia, Ali and Haigh, Sarah J. and Makarovsky, Oleg and Eaves, Laurence and Ponomarenko, Leonid A. and Geim, Andre K. and Novoselov, Kostya S. and Mishchenko, Artem}, year={2012}, month=dec, pages={100–103} }