Crossref
journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
References
165
Referenced
14,599
-
Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).
(
10.1073/pnas.0502848102
) / Proc. Natl Acad. Sci. USA by KS Novoselov (2005) -
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).
(
10.1103/RevModPhys.81.109
) / Rev. Mod. Phys. by AH Castro Neto (2009) -
Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).
(
10.1126/science.1158877
) / Science by AK Geim (2009) -
Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).
(
10.1021/nl0731872
) / Nano Lett. by AA Balandin (2008) -
Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396–2399 (2011).
(
10.1021/nl200758b
) / Nano Lett. by AS Mayorov (2011) -
Bunch, J. S. et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008).
(
10.1021/nl801457b
) / Nano Lett. by JS Bunch (2008) -
Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442–444 (2012).
(
10.1126/science.1211694
) / Science by RR Nair (2012) -
Mattheis, L. F. Band structures of transition-metal-dichalcogenide layer compounds. Phys. Rev. B 8, 3719–3740 (1973).
(
10.1103/PhysRevB.8.3719
) / Phys. Rev. B by LF Mattheis (1973) -
Wilson, J. A. & Yoffe, A. D. Transition metal dichalcogenides: discussion and interpretation of observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969).
(
10.1080/00018736900101307
) / Adv. Phys. by JA Wilson (1969) -
Osada, M. & Sasaki, T. Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 24, 210–228 (2012).
(
10.1002/adma.201103241
) / Adv. Mater. by M Osada (2012) -
Ayari, A., Cobas, E., Ogundadegbe, O. & Fuhrer, M. S. Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J. Appl. Phys. 101, 014507 (2007).
(
10.1063/1.2407388
) / J. Appl. Phys. by A Ayari (2007) -
Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).
(
10.1038/nnano.2010.172
) / Nature Nanotech. by CR Dean (2010) -
Pacile, D., Meyer, J. C., Girit, C. O. & Zettl, A. The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92, (2008).
(
10.1063/1.2903702
) -
Yoffe, A. D. Layer compounds. Annu. Rev. Mater. Sci. 3, 147–170 (1993).
(
10.1146/annurev.ms.03.080173.001051
) / Annu. Rev. Mater. Sci. by AD Yoffe (1993) -
Yoffe, A. D. Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv. Phys. 42, 173–266 (1993).
(
10.1080/00018739300101484
) / Adv. Phys. by AD Yoffe (1993) -
Elias, D. C. et al. Dirac cones reshaped by interaction effects in suspended graphene. Nature Phys. 7, 701–704 (2011).
(
10.1038/nphys2049
) / Nature Phys. by DC Elias (2011) -
Lin, M-W. et al. Room-temperature high on/off ratio in suspended graphene nanoribbon field-effect transistors. Nanotechnology 22, 265201 (2011).
(
10.1088/0957-4484/22/26/265201
) / Nanotechnology by M-W Lin (2011) -
Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).
(
10.1126/science.1150878
) / Science by X Li (2008) -
Han, M. Y., Özyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).
(
10.1103/PhysRevLett.98.206805
) / Phys. Rev. Lett. by MY Han (2007) -
Balog, R. et al. Bandgap opening in graphene induced by patterned hydrogen adsorption. Nature Mater. 9, 315–319 (2010).
(
10.1038/nmat2710
) / Nature Mater. by R Balog (2010) -
Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).
(
10.1038/nature08105
) / Nature by Y Zhang (2009) -
Sipos, B. et al. From Mott state to superconductivity in 1T-TaS2 . Nature Mater. 7, 960–965 (2008).
(
10.1038/nmat2318
) / Nature Mater. by B Sipos (2008) -
Wilson, J. A., Disalvo, F. J. & Mahajan, S. Charge-density waves and superlattices in metallic layered transition-metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).
(
10.1080/00018737500101391
) / Adv. Phys. by JA Wilson (1975) -
Castro Neto, A. H. Charge density wave, superconductivity, and anomalous metallic behavior in 2D transition metal dichalcogenides. Phys. Rev. Lett. 86, 4382–4385 (2001).
(
10.1103/PhysRevLett.86.4382
) / Phys. Rev. Lett. by AH Castro Neto (2001) -
Kuc, A., Zibouche, N. & Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2 . Phys. Rev. B 83, 245213 (2011).
(
10.1103/PhysRevB.83.245213
) / Phys. Rev. B by A Kuc (2011) -
Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).
(
10.1038/nnano.2012.96
) / Nature Nanotech. by KF Mak (2012) -
Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).
(
10.1038/nnano.2012.95
) / Nature Nanotech. by H Zeng (2012) -
Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012).
(
10.1038/ncomms1882
) / Nature Commun. by T Cao (2012) -
Alem, N. et al. Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy. Phys. Rev. B 80, 155425 (2009).
(
10.1103/PhysRevB.80.155425
) / Phys. Rev. B by N Alem (2009) -
Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS2 . ACS Nano 4, 2695–2700 (2010).
(
10.1021/nn1003937
) / ACS Nano by C Lee (2010) -
Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
(
10.1103/PhysRevLett.105.136805
) / Phys. Rev. Lett. by KF Mak (2010) -
Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).
(
10.1021/nl903868w
) / Nano Lett. by A Splendiani (2010) -
Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2 . ACS Nano 5, 9703–9709 (2011).
(
10.1021/nn203879f
) / ACS Nano by S Bertolazzi (2011) -
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).
(
10.1038/nnano.2010.279
) / Nature Nanotech. by B Radisavljevic (2011) -
Radisavljevic, B., Whitwick, M. B. & Kis, A. Integrated circuits and logic operations based on single-layer MoS2 . ACS Nano 5, 9934–9938 (2011).
(
10.1021/nn203715c
) / ACS Nano by B Radisavljevic (2011) -
Benameur, M. M. et al. Visibility of dichalcogenide nanolayers. Nanotechnology 22, 125706 (2011).
(
10.1088/0957-4484/22/12/125706
) / Nanotechnology by MM Benameur (2011) -
Li, H. et al. Optical identification of single- and few-layer MoS2 sheets. Small 8, 682–686 (2012).
(
10.1002/smll.201101958
) / Small by H Li (2012) -
Kalantar-Zadeh, K. et al. Synthesis of atomically thin WO3 sheets from hydrated tungsten trioxide. Chem. Mater. 22, 5660–5666 (2010).
(
10.1021/cm1019603
) / Chem. Mater. by K Kalantar-Zadeh (2010) -
Yin, Z. et al. Single-layer MoS2 phototransistors. ACS Nano 6, 74–80 (2012).
(
10.1021/nn2024557
) / ACS Nano by Z Yin (2012) -
Feng, J. et al. Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv. Mater. 24, 1969–1974 (2012).
(
10.1002/adma.201104681
) / Adv. Mater. by J Feng (2012) -
Zhang, Y., Ye, J., Matsuhashi, Y. & Iwasa, Y. Ambipolar MoS2 thin flake transistors. Nano Lett. 12, 1136–1140 (2012).
(
10.1021/nl2021575
) / Nano Lett. by Y Zhang (2012) -
Castellanos-Gomez, A. et al. Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano Lett. 12, 3187–3192 (2012).
(
10.1021/nl301164v
) / Nano Lett. by A Castellanos-Gomez (2012) -
Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).
(
10.1126/science.1194975
) / Science by JN Coleman (2011) -
Smith, R. J. et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 23, 3944–3948 (2011).
(
10.1002/adma.201102584
) / Adv. Mater. by RJ Smith (2011) -
Sire, C. d. et al. Flexible gigahertz transistors derived from solution-based single-layer graphene. Nano Lett. 12, 1184–1188 (2012).
(
10.1021/nl203316r
) / Nano Lett. by Cd Sire (2012) -
Bissessur, R., Heising, J. & Hirpo, W. Toward pillared layered metal sulfides. intercalation of the chalcogenide clusters Co6Q8(PR3)6 (Q = S, Se, and Te and R = Alkyl) into MoS2 . Chem. Mater. 8, 318–320 (1996).
(
10.1021/cm950378+
) / Chem. Mater. by R Bissessur (1996) -
Joensen, P., Frindt, R. F. & Morrison, S. R. Single-layer MoS2 . Mater. Res. Bull. 21, 457–461 (1986).
(
10.1016/0025-5408(86)90011-5
) / Mater. Res. Bull. by P Joensen (1986) -
Osada, M. & Sasaki, T. Exfoliated oxide nanosheets: new solution to nanoelectronics. J. Mater. Chem. 19, 2503–2511 (2009).
(
10.1039/b820160a
) / J. Mater. Chem. by M Osada (2009) -
Eda, G. et al. Photoluminescence from chemically exfoliated MoS2 . Nano Lett. 11, 5111–5116 (2011).
(
10.1021/nl201874w
) / Nano Lett. by G Eda (2011) -
Zeng, Z. Y. et al. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50, 11093–11097 (2011).
(
10.1002/anie.201106004
) / Angew. Chem. Int. Ed. by ZY Zeng (2011) -
Dines, M. B. Lithium intercalation via n-butyllithium of layered transition-metal dichalcogenides. Mater. Res. Bull. 10, 287–291 (1975).
(
10.1016/0025-5408(75)90115-4
) / Mater. Res. Bull. by MB Dines (1975) -
Tsai, H-L., Heising, J., Schindler, J. L., Kannewurf, C. R. & Kanatzidis, M. G. Exfoliated−restacked phase of WS2 . Chem. Mater. 9, 879–882 (1997).
(
10.1021/cm960579t
) / Chem. Mater. by H-L Tsai (1997) -
Frey, G. L., Reynolds, K. J., Friend, R. H., Cohen, H. & Feldman, Y. Solution-processed anodes from layer-structure materials for high-efficiency polymer light-emitting diodes. J. Am. Chem. Soc. 125, 5998–6007 (2003).
(
10.1021/ja020913o
) / J. Am. Chem. Soc. by GL Frey (2003) -
Bissessur, R., Kanatzidis, M. G., Schindler, J. L. & Kannewurf, C. R. Encapsulation of polymers into MoS2 and metal to insulator transition in metastable MoS2 . J. Chem. Soc. Chem. Commun. 1582–1585 (1993).
(
10.1039/c39930001582
) -
Gordon, R. A., Yang, D., Crozier, E. D., Jiang, D. T. & Frindt, R. F. Structures of exfoliated single layers of WS2, MoS2, and MoSe2 in aqueous suspension. Phys. Rev. B 65, (2002).
(
10.1103/PhysRevB.65.125407
) -
Kirmayer, S., Aharon, E., Dovgolevsky, E., Kalina, M. & Frey, G. L. Self-assembled lamellar MoS2, SnS2 and SiO2 semiconducting polymer nanocomposites. Phil. Trans. R. Soc. A 365, 1489–1508 (2007).
(
10.1098/rsta.2007.2028
) / Phil. Trans. R. Soc. A by S Kirmayer (2007) -
Zeng, Z. et al. An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem. Int. Ed. 51, 9052–9056 (2012).
(
10.1002/anie.201204208
) / Angew. Chem. Int. Ed. by Z Zeng (2012) -
Zhou, K-G., Mao, N-N., Wang, H-X., Peng, Y. & Zhang, H-L. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew. Chem. Int. Ed. 50, 10839–10842 (2011).
(
10.1002/anie.201105364
) / Angew. Chem. Int. Ed. by K-G Zhou (2011) -
May, P., Khan, U., Hughes, J. M. & Coleman, J. N. Role of solubility parameters in understanding the steric stabilization of exfoliated two-dimensional nanosheets by adsorbed polymers. J. Phys. Chem. C 116, 11393–11400 (2012).
(
10.1021/jp302365w
) / J. Phys. Chem. C by P May (2012) -
Cunningham, G. et al. Solvent Exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano 6, 3468–3480 (2012).
(
10.1021/nn300503e
) / ACS Nano by G Cunningham (2012) -
Díaz, E., Ordóñez, S. & Vega, A. Adsorption of volatile organic compounds onto carbon nanotubes, carbon nanofibers, and high-surface-area graphites. J. Colloid Interface Sci. 305, 7–16 (2007).
(
10.1016/j.jcis.2006.09.036
) / J. Colloid Interface Sci. by E Díaz (2007) -
Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech. 3, 563–568 (2008).
(
10.1038/nnano.2008.215
) / Nature Nanotech. by Y Hernandez (2008) -
Shih, C-J. et al. Bi- and trilayer graphene solutions. Nature Nanotech. 6, 439–445 (2011).
(
10.1038/nnano.2011.94
) / Nature Nanotech. by C-J Shih (2011) -
Green, A. A. & Hersam, M. C. Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 9, 4031–4036 (2009).
(
10.1021/nl902200b
) / Nano Lett. by AA Green (2009) -
O'Neill, A., Khan, U. & Coleman, J. N. Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size. Chem. Mater. 24, 2414–2421 (2012).
(
10.1021/cm301515z
) / Chem. Mater. by A O'Neill (2012) -
Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).
(
10.1126/science.1171245
) / Science by X Li (2009) -
Hass, J., de Heer, W. A. & Conrad, E. H. The growth and morphology of epitaxial multilayer graphene. J. Phys. Condens. Matter 20, (2008).
(
10.1088/0953-8984/20/32/323202
) -
Wu, Y. et al. State-of-the-art graphene high-frequency electronics. Nano Lett. 12, 3062–3067 (2012).
(
10.1021/nl300904k
) / Nano Lett. by Y Wu (2012) -
Wu, Y. et al. High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472, 74–78 (2011).
(
10.1038/nature09979
) / Nature by Y Wu (2011) -
Lin, Y-M. et al. Wafer-scale graphene integrated circuit. Science 332, 1294–1297 (2011).
(
10.1126/science.1204428
) / Science by Y-M Lin (2011) -
Lee, Y-H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).
(
10.1002/adma.201104798
) / Adv. Mater. by Y-H Lee (2012) -
Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P. M. & Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2012).
(
10.1002/smll.201102654
) / Small by Y Zhan (2012) -
Liu, K.-K. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012).
(
10.1021/nl2043612
) / Nano Lett. by K-K Liu (2012) -
Balendhran, S. et al. Atomically thin layers of MoS2 via a two step thermal evaporation-exfoliation method. Nanoscale 4, 461–466 (2012).
(
10.1039/C1NR10803D
) / Nanoscale by S Balendhran (2012) -
Shi, Y. et al. Van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12, 2784–2791 (2012).
(
10.1021/nl204562j
) / Nano Lett. by Y Shi (2012) -
Peng, Y. et al. Hydrothermal synthesis of MoS2 and its pressure-related crystallization. J. Solid State Chem. 159, 170–173 (2001).
(
10.1006/jssc.2001.9146
) / J. Solid State Chem. by Y Peng (2001) -
Peng, Y. et al. Hydrothermal synthesis and characterization of single-molecular-layer MoS2 and MoSe2 . Chem. Lett. 30, 772–773 (2001).
(
10.1246/cl.2001.772
) / Chem. Lett. by Y Peng (2001) -
Matte, H. S. S. et al. MoS2 and WS2 Analogues of graphene. Angew. Chem. Int. Ed. 49, 4059–4062 (2010).
(
10.1002/anie.201000009
) / Angew. Chem. Int. Ed. by HSS Matte (2010) -
Matte, H. S. S. R., Plowman, B., Datta, R. & Rao, C. N. R. Graphene analogues of layered metal selenides. Dalton Trans. 40, 10322–10325 (2011).
(
10.1039/c1dt10652j
) / Dalton Trans. by HSSR Matte (2011) -
Kobayashi, K. & Yamauchi, J. Electronic structure and scanning-tunneling-microscopy image of molybdenum dichalcogenide surfaces. Phys. Rev. B 51, 17085–17095 (1995).
(
10.1103/PhysRevB.51.17085
) / Phys. Rev. B by K Kobayashi (1995) -
Li, T. & Galli, G. Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 111, 16192–16196 (2007).
(
10.1021/jp075424v
) / J. Phys. Chem. C by T Li (2007) -
Liu, L., Kumar, S. B., Ouyang, Y. & Guo, J. Performance limits of monolayer transition metal dichalcogenide transistors. IEEE Trans. Electron Devices 58, 3042–3047 (2011).
(
10.1109/TED.2011.2159221
) / IEEE Trans. Electron Devices by L Liu (2011) -
Ding, Y. et al. First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers. Physica B 406, 2254–2260 (2011).
(
10.1016/j.physb.2011.03.044
) / Physica B by Y Ding (2011) -
Ataca, C., Şahin, H. & Ciraci, S. Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116, 8983–8999 (2012).
(
10.1021/jp212558p
) / J. Phys. Chem. C by C Ataca (2012) -
Lebègue, S. & Eriksson, O. Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 79, 115409 (2009).
(
10.1103/PhysRevB.79.115409
) / Phys. Rev. B by S Lebègue (2009) -
Frindt, R. F. The optical properties of single crystals of WSe2 and MoTe2 . J. Phys. Chem. Solids 24, 1107–1108 (1963).
(
10.1016/0022-3697(63)90024-6
) / J. Phys. Chem. Solids by RF Frindt (1963) -
Frindt, R. F. & Yoffe, A. D. Physical properties of layer structures: optical properties and photoconductivity of thin crystals of molybdenum disulphide. Proc. R. Soc. Lond. A 273, 69–83 (1963).
(
10.1098/rspa.1963.0075
) / Proc. R. Soc. Lond. A by RF Frindt (1963) -
Kam, K. K. & Parkinson, B. A. Detailed photocurrent spectroscopy of the semiconducting group-VI transition-metal dichalcogenides. J. Phys. Chem. 86, 463–467 (1982).
(
10.1021/j100393a010
) / J. Phys. Chem. by KK Kam (1982) -
Bollinger, M. V. et al. One-dimensional metallic edge states in MoS2 . Phys. Rev. Lett. 87, 196803 (2001).
(
10.1103/PhysRevLett.87.196803
) / Phys. Rev. Lett. by MV Bollinger (2001) -
Böker, T. et al. Band structure of MoS2, MoSe2, and α-MoTe2: angle-resolved photoelectron spectroscopy and ab initio calculations. Phys. Rev. B 64, 235305 (2001).
(
10.1103/PhysRevB.64.235305
) / Phys. Rev. B by T Böker (2001) -
Schwierz, F. Graphene transistors. Nature Nanotech. 5, 487–496 (2010).
(
10.1038/nnano.2010.89
) / Nature Nanotech. by F Schwierz (2010) - The International Technology Roadmap for Semiconductors. http://www.itrs.net/Links/2011ITRS/Home2011.htm (Semiconductor Industry Association, 2011).
- Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2007). / Physics of Semiconductor Devices by SM Sze (2007)
-
Morkoc, H. et al. Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semiconductor device technologies. J. Appl. Phys. 76, 1363–1398 (1994).
(
10.1063/1.358463
) / J. Appl. Phys. by H Morkoc (1994) -
Avouris, P., Chen, Z. & Perebeinos, V. Carbon-based electronics. Nature Nanotech. 2, 605–615 (2007).
(
10.1038/nnano.2007.300
) / Nature Nanotech. by P Avouris (2007) -
Avouris, P., Freitag, M. & Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nature Photon. 2, 341–350 (2008).
(
10.1038/nphoton.2008.94
) / Nature Photon. by P Avouris (2008) -
Lu, W. & Lieber, C. M. Nanoelectronics from the bottom up. Nature Mater. 6, 841–850 (2007).
(
10.1038/nmat2028
) / Nature Mater. by W Lu (2007) -
Yoon, Y., Ganapathi, K. & Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett. 11, 3768–3773 (2011).
(
10.1021/nl2018178
) / Nano Lett. by Y Yoon (2011) -
Colinge, J-P. Multiple-gate SOI MOSFETs. Solid State Electron. 48, 897–905 (2004).
(
10.1016/j.sse.2003.12.020
) / Solid State Electron. by J-P Colinge (2004) -
Ando, T., Fowler, A. B. & Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982).
(
10.1103/RevModPhys.54.437
) / Rev. Mod. Phys. by T Ando (1982) -
Ridley, B. K. The electron-phonon interaction in quasi-two-dimensional semiconductor quantum-well structures. J. Phys. C 15, 5899 (1982).
(
10.1088/0022-3719/15/28/021
) / J. Phys. C by BK Ridley (1982) -
Chen, J-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2 . Nature Nanotech. 3, 206–209 (2008).
(
10.1038/nnano.2008.58
) / Nature Nanotech. by J-H Chen (2008) -
Adam, S., Hwang, E. H. & Das Sarma, S. Scattering mechanisms and Boltzmann transport in graphene. Physica E 40, 1022–1025 (2008).
(
10.1016/j.physe.2007.09.064
) / Physica E by S Adam (2008) -
Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012).
(
10.1103/PhysRevB.85.115317
) / Phys. Rev. B by K Kaasbjerg (2012) -
Hwang, E. H., Adam, S. & Das Sarma, S. Carrier transport in two-dimensional graphene layers. Phys. Rev. Lett. 98, 186806 (2007).
(
10.1103/PhysRevLett.98.186806
) / Phys. Rev. Lett. by EH Hwang (2007) -
Jena, D. & Konar, A. Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 98, 136805 (2007).
(
10.1103/PhysRevLett.98.136805
) / Phys. Rev. Lett. by D Jena (2007) -
Konar, A., Fang, T. & Jena, D. Effect of high-κ gate dielectrics on charge transport in graphene-based field effect transistors. Phys. Rev. B 82, 115452 (2010).
(
10.1103/PhysRevB.82.115452
) / Phys. Rev. B by A Konar (2010) -
Ponomarenko, L. A. et al. Effect of a high-κ environment on charge carrier mobility in graphene. Phys. Rev. Lett. 102, 206603 (2009).
(
10.1103/PhysRevLett.102.206603
) / Phys. Rev. Lett. by LA Ponomarenko (2009) -
Zhu, W., Perebeinos, V., Freitag, M. & Avouris, P. Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys. Rev. B 80, 235402 (2009).
(
10.1103/PhysRevB.80.235402
) / Phys. Rev. B by W Zhu (2009) -
Kim, S. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nature Commun. 3, 1011 (2012).
(
10.1038/ncomms2018
) / Nature Commun. by S Kim (2012) -
Sakaki, H., Noda, T., Hirakawa, K., Tanaka, M. & Matsusue, T. Interface roughness scattering in GaAs/AlAs quantum wells. Appl. Phys. Lett. 51, 1934–1936 (1987).
(
10.1063/1.98305
) / Appl. Phys. Lett. by H Sakaki (1987) -
Castro, E. V. et al. Limits on charge carrier mobility in suspended graphene due to flexural phonons. Phys. Rev. Lett. 105, 266601 (2010).
(
10.1103/PhysRevLett.105.266601
) / Phys. Rev. Lett. by EV Castro (2010) -
Brivio, J., Alexander, D. T. L. & Kis, A. Ripples and layers in ultrathin MoS2 membranes. Nano Lett. 11, 5148–5153 (2011).
(
10.1021/nl2022288
) / Nano Lett. by J Brivio (2011) -
Fivaz, R. & Mooser, E. Mobility of charge carriers in semiconducting layer structures. Phys. Rev. 163, 743–755 (1967).
(
10.1103/PhysRev.163.743
) / Phys. Rev. by R Fivaz (1967) -
Podzorov, V., Gershenson, M. E., Kloc, C., Zeis, R. & Bucher, E. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 84, 3301–3303 (2004).
(
10.1063/1.1723695
) / Appl. Phys. Lett. by V Podzorov (2004) -
Newaz, A. K. M., Puzyrev, Y. S., Wang, B., Pantelides, S. T. & Bolotin, K. I. Probing charge scattering mechanisms in suspended graphene by varying its dielectric environment. Nature Commun. 3, 734 (2012).
(
10.1038/ncomms1740
) / Nature Commun. by AKM Newaz (2012) -
Chen, F., Xia, J., Ferry, D. K. & Tao, N. Dielectric screening enhanced performance in graphene FET. Nano Lett. 9, 2571–2574 (2009).
(
10.1021/nl900725u
) / Nano Lett. by F Chen (2009) -
Fang, H. et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788–3792 (2012).
(
10.1021/nl301702r
) / Nano Lett. by H Fang (2012) -
Lee, K. et al. Electrical characteristics of molybdenum disulfide flakes produced by liquid exfoliation. Adv. Mater. 23, 4178–4182 (2011).
(
10.1002/adma.201101013
) / Adv. Mater. by K Lee (2011) - Brown, S. & Vranesic, Z. Fundamentals of Digital Logic with VHDL Design. (McGraw-Hill, 2008). / Fundamentals of Digital Logic with VHDL Design by S Brown (2008)
-
Wang, H. et al. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12, 4674–4680 (2012).
(
10.1021/nl302015v
) / Nano Lett. by H Wang (2012) -
He, Q. et al. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 8, 2994–2999 (2012).
(
10.1002/smll.201201224
) / Small by Q He (2012) -
Pu, J. et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12, 4013–4017 (2012).
(
10.1021/nl301335q
) / Nano Lett. by J Pu (2012) -
Khan, M. A., Bhattarai, A., Kuznia, J. N. & Olson, D. T. High electron mobility transistor based on a GaN–AlxGa1– xN heterojunction. Appl. Phys. Lett. 63, 1214–1215 (1993).
(
10.1063/1.109775
) / Appl. Phys. Lett. by MA Khan (1993) -
Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).
(
10.1126/science.1218461
) / Science by L Britnell (2012) -
Scholes, G. D. & Rumbles, G. Excitons in nanoscale systems. Nature Mater. 5, 683–696 (2006).
(
10.1038/nmat1710
) / Nature Mater. by GD Scholes (2006) -
Kamat, P. V. Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737–18753 (2008).
(
10.1021/jp806791s
) / J. Phys. Chem. C by PV Kamat (2008) -
Law, M., Goldberger, J. & Yang, P. D. Semiconductor nanowires and nanotubes. Annu. Rev. Mater. Res. 34, 83–122 (2004).
(
10.1146/annurev.matsci.34.040203.112300
) / Annu. Rev. Mater. Res. by M Law (2004) -
Coehoorn, R., Haas, C. & de Groot, R. A. Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. Phys. Rev. B 35, 6203–6206 (1987).
(
10.1103/PhysRevB.35.6203
) / Phys. Rev. B by R Coehoorn (1987) -
Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86, 115409 (2012).
(
10.1103/PhysRevB.86.115409
) / Phys. Rev. B by A Ramasubramaniam (2012) -
Cheiwchanchamnangij, T. & Lambrecht, W. R. L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2 . Phys. Rev. B 85, 205302 (2012).
(
10.1103/PhysRevB.85.205302
) / Phys. Rev. B by T Cheiwchanchamnangij (2012) -
Molina-Sanchez, A. & Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2 . Phys. Rev. B 84, 155413 (2011).
(
10.1103/PhysRevB.84.155413
) / Phys. Rev. B by A Molina-Sanchez (2011) -
Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).
(
10.1126/science.1156965
) / Science by RR Nair (2008) -
Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 5, 574–578 (2010).
(
10.1038/nnano.2010.132
) / Nature Nanotech. by S Bae (2010) -
Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).
(
10.1038/nphoton.2010.186
) / Nature Photon. by F Bonaccorso (2010) -
Wang, X., Zhi, L. & Mullen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2007).
(
10.1021/nl072838r
) / Nano Lett. by X Wang (2007) -
Alharbi, F. et al. Abundant non-toxic materials for thin film solar cells: alternative to conventional materials. Renew. Energy 36, 2753–2758 (2011).
(
10.1016/j.renene.2011.03.010
) / Renew. Energy by F Alharbi (2011) -
Beal, A. R., Hughes, H. P. & Liang, W. Y. The reflectivity spectra of some group VA transition metal dichalcogenides. J. Phys. C 8, 4236 (1975).
(
10.1088/0022-3719/8/24/015
) / J. Phys. C by AR Beal (1975) -
Chandra, S., Singh, D. P., Srivastava, P. C. & Sahu, S. N. Electrodeposited semiconducting molybdenum selenide films. II. Optical, electrical, electrochemical and photoelectrochemical solar cell studies. J. Phys. D: Appl. Phys. 17, 2125 (1984).
(
10.1088/0022-3727/17/10/023
) / J. Phys. D: Appl. Phys. by S Chandra (1984) -
Shimada, T. et al. Work function and photothreshold of layered metal dichalcogenides. Jpn. J. Appl. Phys. 33, 2696.
(
10.1143/JJAP.33.2696
) / Japanese Journal of Applied Physics by Toshihiro Shimada (1994) -
Friend, R. H. & Yoffe, A. D. Electronic-properties of intercalation complexes of the transition-metal dichalcogenides. Adv. Phys. 36, 1–94 (1987).
(
10.1080/00018738700101951
) / Adv. Phys. by RH Friend (1987) -
Benavente, E., Santa Ana, M. A., Mendizabal, F. & Gonzalez, G. Intercalation chemistry of molybdenum disulfide. Coord. Chem. Rev. 224, 87–109 (2002).
(
10.1016/S0010-8545(01)00392-7
) / Coord. Chem. Rev. by E Benavente (2002) -
Gourmelon, E. et al. MS2 (M = W, Mo) photosensitive thin films for solar cells. Sol. Energ. Mater. Sol. Cells 46, 115–121 (1997).
(
10.1016/S0927-0248(96)00096-7
) / Sol. Energ. Mater. Sol. Cells by E Gourmelon (1997) -
Lee, H. S. et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 446–701 (2012).
(
10.1021/nl203805y
) / Nano Lett. by HS Lee (2012) -
Shanmugam, M., Bansal, T., Durcan, C. A. & Yu, B. Molybdenum disulphide/titanium dioxide nanocomposite-poly 3-hexylthiophene bulk heterojunction solar cell. Appl. Phys. Lett. 100, 153901–153904 (2012).
(
10.1063/1.3703602
) / Appl. Phys. Lett. by M Shanmugam (2012) -
Thomalla, M. & Tributsch, H. Photosensitization of nanostructured TiO2 with WS2 quantum sheets. J. Phys. Chem. B 110, 12167–12171 (2006).
(
10.1021/jp061371q
) / J. Phys. Chem. B by M Thomalla (2006) -
Ho, W., Yu, J. C., Lin, J., Yu, J. & Li, P. Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2 . Langmuir 20, 5865–5869 (2004).
(
10.1021/la049838g
) / Langmuir by W Ho (2004) -
Reynolds, K. J., Barker, J. A., Greenham, N. C., Friend, R. H. & Frey, G. L. Inorganic solution-processed hole-injecting and electron-blocking layers in polymer light-emitting diodes. J. Appl. Phys. 92, 7556–7563 (2002).
(
10.1063/1.1522812
) / J. Appl. Phys. by KJ Reynolds (2002) -
Polman, A. & Atwater, H. A. Photonic design principles for ultrahigh-efficiency photovoltaics. Nature Mater. 11, 174–177 (2012).
(
10.1038/nmat3263
) / Nature Mater. by A Polman (2012) -
Gokus, T. et al. Making graphene luminescent by oxygen plasma treatment. ACS Nano 3, 3963–3968 (2009).
(
10.1021/nn9012753
) / ACS Nano by T Gokus (2009) -
Eda, G. et al. Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22, 505–509 (2010).
(
10.1002/adma.200901996
) / Adv. Mater. by G Eda (2010) -
Carladous, A. et al. Light emission from spectral analysis of Au/MoS2 nanocontacts stimulated by scanning tunneling microscopy. Phys. Rev. B 66, 045401 (2002).
(
10.1103/PhysRevB.66.045401
) / Phys. Rev. B by A Carladous (2002) -
Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).
(
10.1103/PhysRevLett.108.196802
) / Phys. Rev. Lett. by D Xiao (2012) -
Zhu, Z. Y., Cheng, Y. C. & Schwingenschlögl, U. Giant spin–orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 84, 153402 (2011).
(
10.1103/PhysRevB.84.153402
) / Phys. Rev. B by ZY Zhu (2011) -
Rycerz, A., Tworzydlo, J. & Beenakker, C. W. J. Valley filter and valley valve in graphene. Nature Phys. 3, 172–175 (2007).
(
10.1038/nphys547
) / Nature Phys. by A Rycerz (2007) -
Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).
(
10.1103/PhysRevLett.99.236809
) / Phys. Rev. Lett. by D Xiao (2007) -
Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nature Mater. 6, 652–655 (2007).
(
10.1038/nmat1967
) / Nature Mater. by F Schedin (2007) -
Fowler, J. D. et al. Practical chemical sensors from chemically derived graphene. ACS Nano 3, 301–306 (2009).
(
10.1021/nn800593m
) / ACS Nano by JD Fowler (2009) -
Dan, Y. P., Lu, Y., Kybert, N. J., Luo, Z. T. & Johnson, A. T. C. Intrinsic response of graphene vapor sensors. Nano Lett. 9, 1472–1475 (2009).
(
10.1021/nl8033637
) / Nano Lett. by YP Dan (2009) -
Julien, C., Sekine, T. & Balkanski, M. Lattice dynamics of lithium intercalated MoS2 . Solid State Ionics 48, 225–229 (1991).
(
10.1016/0167-2738(91)90036-B
) / Solid State Ionics by C Julien (1991) -
Li, H. et al. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8, 63–67 (2012).
(
10.1002/smll.201101016
) / Small by H Li (2012) -
Late, D. J., Liu, B., Matte, H. S. S. R., Dravid, V. P. & Rao, C. N. R. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 6, 5635–5641 (2012).
(
10.1021/nn301572c
) / ACS Nano by DJ Late (2012) -
Wu, S. et al. Electrochemically reduced single-layer MoS2 nanosheets: characterization, properties, and sensing applications. Small 8, 2264–2270 (2012).
(
10.1002/smll.201200044
) / Small by S Wu (2012) -
Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).
(
10.1080/00018737500101391
) / Adv. Phys. by JA Wilson (1975) - Gmelin Handbook of Inorganic and Organometallic Chemistry 8th edn, Vol. B7 (Springer, 1995).
Dates
Type | When |
---|---|
Created | 12 years, 9 months ago (Nov. 6, 2012, 6:52 a.m.) |
Deposited | 2 years, 3 months ago (May 18, 2023, 4:24 p.m.) |
Indexed | 11 minutes ago (Aug. 21, 2025, 3:05 a.m.) |
Issued | 12 years, 9 months ago (Nov. 1, 2012) |
Published | 12 years, 9 months ago (Nov. 1, 2012) |
Published Online | 12 years, 9 months ago (Nov. 6, 2012) |
Published Print | 12 years, 9 months ago (Nov. 1, 2012) |
@article{Wang_2012, title={Electronics and optoelectronics of two-dimensional transition metal dichalcogenides}, volume={7}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2012.193}, DOI={10.1038/nnano.2012.193}, number={11}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Wang, Qing Hua and Kalantar-Zadeh, Kourosh and Kis, Andras and Coleman, Jonathan N. and Strano, Michael S.}, year={2012}, month=nov, pages={699–712} }