10.1038/nnano.2011.96
Crossref journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Bibliography

Simpson, R. E., Fons, P., Kolobov, A. V., Fukaya, T., Krbal, M., Yagi, T., & Tominaga, J. (2011). Interfacial phase-change memory. Nature Nanotechnology, 6(8), 501–505.

Authors 7
  1. R. E. Simpson (first)
  2. P. Fons (additional)
  3. A. V. Kolobov (additional)
  4. T. Fukaya (additional)
  5. M. Krbal (additional)
  6. T. Yagi (additional)
  7. J. Tominaga (additional)
References 35 Referenced 673
  1. Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nature Mater. 6, 824–832 (2007). (10.1038/nmat2009) / Nature Mater. by M Wuttig (2007)
  2. Karpov, I. V., Mitra, M., Kau, D., Spadini, G., Kryukov, Y. A., & Karpov, V. G. Evidence of field induced nucleation in phase change memory. Appl. Phys. Lett. 92, 173501 (2008). (10.1063/1.2917583) / Appl. Phys. Lett. by IV Karpov (2008)
  3. Fons, P. et al. Photoassisted amorphization of the phase-change memory alloy Ge2Sb2Te5 . Phys. Rev. B 82, 041203 (2010). (10.1103/PhysRevB.82.041203) / Phys. Rev. B by P Fons (2010)
  4. Makino, K., Tominaga, J. & Hase, M. Ultrafast optical manipulation of atomic arrangements in chalcogenide alloy memory materials. Opt. Express 19, 1260–1270 (2011). (10.1364/OE.19.001260) / Opt. Express by K Makino (2011)
  5. Kolobov, A. V., Krbal, M., Fons, P., Tominaga, J., & Uruga, T. Distortion-triggered loss of long-range order in solids with bonding energy hierarchy. Nature Chem. 3, 311–316 (2011). (10.1038/nchem.1007) / Nature Chem. by AV Kolobov (2011)
  6. Lankhorst, M., Ketelaars, B. & Wolters, R. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nature Mater. 4, 347–352 (2005). (10.1038/nmat1350) / Nature Mater. by M Lankhorst (2005)
  7. Shportko, K., Kremers, S., Woda, M., Lencer, D., Robertson, J. & Wuttig, M. Resonant bonding in crystalline phase-change materials. Nature Mater. 7, 653–658 (2008). (10.1038/nmat2226) / Nature Mater. by K Shportko (2008)
  8. Huang, B. & Robertson, J. Bonding origin of optical contrast in phase-change memory materials. Phys. Rev. B 81, 081204R (2010). (10.1103/PhysRevB.81.081204) / Phys. Rev. B by B Huang (2010)
  9. Pirovano, A., Lacaita, A. L., Benvenuti, A., Pellizzer, F., Hudgens, S. & Bez, R. Scaling analysis of phase-change memory technology. IEDM Technical Digest 29.6.1–29.6.4 (2003). (10.1109/IEDM.2003.1269376)
  10. Simpson, R. E. et al. Toward the ultimate limit of phase change in Ge2Sb2Te5 . Nano. Lett. 10, 414–419 (2010). (10.1021/nl902777z) / Nano. Lett. by RE Simpson (2010)
  11. Burr, G. W. et al. Phase change memory technology. J. Vac. Sci. Technol. B 28, 223–262 (2010). (10.1116/1.3301579) / J. Vac. Sci. Technol. B by GW Burr (2010)
  12. Kolobov, A., Fons, P., Frenkel, A., Ankudinov, A., Tominaga, J., and Uruga, T. Understanding the phase-change mechanism of rewritable optical media. Nature Mater. 3, 703–708 (2004). (10.1038/nmat1215) / Nature Mater. by A Kolobov (2004)
  13. Tominaga, J., Simpson, R., Fons, P. & Kolobov, A. Phase change meta-material and device characteristics. Proc. Europ. Symp. Phase Change and Ovonic Science, 54–59 (2010).
  14. Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N. & Takao, M. Rapid phase-transitions of GeTe–Sb2Te3 pseudobinary amorphous thin-films for an optical disk memory. J. Appl. Phys. 69, 2849–2856 (1991). (10.1063/1.348620) / J. Appl. Phys. by N Yamada (1991)
  15. Chong, T. C. et al. Crystalline amorphous semiconductor superlattice. Phys. Rev. Lett. 100, 136101 (2008). (10.1103/PhysRevLett.100.136101) / Phys. Rev. Lett. by TC Chong (2008)
  16. Krbal, M. et al. Intrinsic complexity of the melt-quenched amorphous Ge2Sb2Te5 memory alloy. Phys. Rev. B 83, 054203 (2011). (10.1103/PhysRevB.83.054203) / Phys. Rev. B by M Krbal (2011)
  17. Akola, J. et al. Experimentally constrained density-functional calculations of the amorphous structure of the prototypical phase-change material Ge2Sb2Te5 . Phys. Rev. B 80, 020201 (2009). (10.1103/PhysRevB.80.020201) / Phys. Rev. B by J Akola (2009)
  18. Simpson, R., Fons, P., Wang, X., Kolobov, A. V., Fukaya, T. & Tominaga, J. Nonmelting super-resolution near-field apertures in Sb–Te alloys. Appl. Phys. Lett. 97, 161906 (2010). (10.1063/1.3502593) / Appl. Phys. Lett. by R Simpson (2010)
  19. Kwon, M-H. et al. Nanometer-scale order in amorphous Ge2Sb2Te5 analyzed by fluctuation electron microscopy. Appl. Phys. Lett. 90, 021923 (2007). (10.1063/1.2430067) / Appl. Phys. Lett. by M-H Kwon (2007)
  20. Lee, B-S. et al. Observation of the role of subcritical nuclei in crystallization of a glassy solid. Science 326, 980–984 (2009). (10.1126/science.1177483) / Science by B-S Lee (2009)
  21. Hegedüs, J. & Elliott, S. Microscopic origin of the fast crystallization ability of Ge–Sb–Te phase-change memory materials. Nature Mater. 7, 399–405 (2008). (10.1038/nmat2157) / Nature Mater. by J Hegedüs (2008)
  22. Akola, J. & Jones, R. Binary alloys of Ge and Te: order, voids, and the eutectic composition. Phys. Rev. Lett. 100, 205502 (2008). (10.1103/PhysRevLett.100.205502) / Phys. Rev. Lett. by J Akola (2008)
  23. Hegedus, J. & Elliott, S. R. Computer-simulation design of new phase-change memory materials. Phys. Status Solidi A 207, 510–515 (2010). (10.1002/pssa.200982664) / Phys. Status Solidi A by J Hegedus (2010)
  24. Weidenhof, V., Friedrich, I., Ziegler, S. & Wuttig, M. Laser induced crystallization of amorphous GeSbTe films. J. Appl. Phys. 89, 3168–3176 (2001). (10.1063/1.1351868) / J. Appl. Phys. by V Weidenhof (2001)
  25. Chen, G. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 57, 14958–14973 (1998). (10.1103/PhysRevB.57.14958) / Phys. Rev. B by G Chen (1998)
  26. Taketoshi, N., Baba, T. & Ono, A. Development of a thermal diffusivity measurement system for metal thin films using a picosecond thermoreflectance technique. Meas. Sci. Technol. 12, 2064–2073 (2001). (10.1088/0957-0233/12/12/306) / Meas. Sci. Technol. by N Taketoshi (2001)
  27. Chong, T. et al. Phase change random access memory cell with superlattice-like structure. Appl. Phys. Lett. 88, 122114 (2006). (10.1063/1.2181191) / Appl. Phys. Lett. by T Chong (2006)
  28. Lai, S. & Lowrey, T. OUM – a 180 nm nonvolatile memory cell element technology for stand alone and embedded application. IEDM Technical Digest 36.5.1–36.5.4 (2001). (10.1109/IEDM.2001.979636)
  29. Chen, K-N. & Krusin-Elbaum, L. The fabrication of a programmable via using phase-change material in CMOS-compatible technology. Nanotechnology 21, 134001 (2010). (10.1088/0957-4484/21/13/134001) / Nanotechnology by K-N Chen (2010)
  30. Kim, C. et al. Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices. Appl. Phys. Lett. 94, 193504 (2009). (10.1063/1.3127223) / Appl. Phys. Lett. by C Kim (2009)
  31. Yang, T-Y., Park, I-M., Kim, B-J. & Joo, Y-C. Atomic migration in molten and crystalline Ge2Sb2Te5 under high electric field. Appl. Phys. Lett. 95, 032104 (2009). (10.1063/1.3184584) / Appl. Phys. Lett. by T-Y Yang (2009)
  32. Poborchii, V. V., Kolobov, A. V., & Tanaka, K. Photomelting of selenium at low temperature. Appl. Phys. Lett. 74, 215–217 (1999). (10.1063/1.123297) / Appl. Phys. Lett. by VV Poborchii (1999)
  33. Frumar, M., Firth, A. & Owen, A. Optically induced crystal-to-amorphous-state transition in As2S3 . J. Non-Cryst. Solids 192, 447–450 (1995). (10.1016/0022-3093(95)00426-2) / J. Non-Cryst. Solids by M Frumar (1995)
  34. Elliott, S. & Kolobov, A. Athermal light-induced vitrification of As50Se50 films. J. Non-Cryst. Solids 128, 216–220 (1991). (10.1016/0022-3093(91)90516-9) / J. Non-Cryst. Solids by S Elliott (1991)
  35. Málek, J. The applicability of Johnson–Mehl–Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim. Acta. 267, 61–73 (1995). (10.1016/0040-6031(95)02466-2) / Thermochim. Acta. by J Málek (1995)
Dates
Type When
Created 14 years, 1 month ago (July 4, 2011, 6:54 a.m.)
Deposited 5 months, 2 weeks ago (March 6, 2025, 5:06 p.m.)
Indexed 50 minutes ago (Aug. 21, 2025, 2:27 a.m.)
Issued 14 years, 1 month ago (July 3, 2011)
Published 14 years, 1 month ago (July 3, 2011)
Published Online 14 years, 1 month ago (July 3, 2011)
Published Print 14 years ago (Aug. 1, 2011)
Funders 0

None

@article{Simpson_2011, title={Interfacial phase-change memory}, volume={6}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2011.96}, DOI={10.1038/nnano.2011.96}, number={8}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Simpson, R. E. and Fons, P. and Kolobov, A. V. and Fukaya, T. and Krbal, M. and Yagi, T. and Tominaga, J.}, year={2011}, month=jul, pages={501–505} }