Crossref journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Bibliography

Xia, F., Perebeinos, V., Lin, Y., Wu, Y., & Avouris, P. (2011). The origins and limits of metal–graphene junction resistance. Nature Nanotechnology, 6(3), 179–184.

Authors 5
  1. Fengnian Xia (first)
  2. Vasili Perebeinos (additional)
  3. Yu-ming Lin (additional)
  4. Yanqing Wu (additional)
  5. Phaedon Avouris (additional)
References 30 Referenced 709
  1. Meric, I., Baklitskaya, N., Kim, P. & Shepard, K. L. RF performance of top-gated graphene field-effect transistors. IEEE International Electron Devices Meeting IEDM.2008.4796738, San Francisco, California (2008). (10.1109/IEDM.2008.4796738)
  2. Lin, Y.-M. et al. 100 GHz transistors from wafer-scale epitaxial graphene. Science 327, 662 (2010). (10.1126/science.1184289) / Science by Y-M Lin (2010)
  3. Moon, J. S. et al. Epitaxial-graphene RF field-effect transistors on Si-face 6H–SiC substrates. IEEE Electron. Device Lett. 30, 650–652 (2009). (10.1109/LED.2009.2020699) / IEEE Electron. Device Lett. by JS Moon (2009)
  4. Xia, F., Farmer, D. B., Lin, Y.-M. & Avouris, Ph. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10, 715–718 (2010). (10.1021/nl9039636) / Nano Lett. by F Xia (2010)
  5. Xia, F. et al. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9, 1039–1044 (2009). (10.1021/nl8033812) / Nano Lett. by F Xia (2009)
  6. Danneau, R. et al. Shot noise in ballistic graphene. Phys. Rev. Lett. 100, 196802 (2008). (10.1103/PhysRevLett.100.196802) / Phys. Rev. Lett. by R Danneau (2008)
  7. Nagashio, K., Nishimura, T., Kita, K. & Toriumi, A. Metal/graphene contact as a performance killer of ultra-high mobility graphene—analysis of intrinsic mobility and contact resistance. IEEE International Electron Devices Meeting IEDM.2009.5424297, Baltimore, Maryland (2009). (10.1109/IEDM.2009.5424297)
  8. Blake, P. et al. Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point. Solid State Commun. 149, 1068–1071 (2009). (10.1016/j.ssc.2009.02.039) / Solid State Commun. by P Blake (2009)
  9. Russo, S., Craciun, M. F., Yamamoto, M., Morpurgo, A. F. & Tarucha, S. Contact resistance in graphene-based devices. Physica E 42, 677–679 (2010). (10.1016/j.physe.2009.11.080) / Physica E by S Russo (2010)
  10. Venugopal, A., Colombo, L. & Vogel, E. Contact resistance in few and multilayer graphene devices. Appl. Phys. Lett. 96, 013512 (2010). (10.1063/1.3290248) / Appl. Phys. Lett. by A Venugopal (2010)
  11. Datta, S. Electronic Transport in Mesoscopic Systems Ch. 2 (Cambridge Univ. Press, 1995). (10.1017/CBO9780511805776) / Electronic Transport in Mesoscopic Systems by S Datta (1995)
  12. Anantram, M. P., Datta, S. & Xue, Y. Coupling of carbon nanotubes to metallic contacts. Phys. Rev. B 61, 14219–14224 (2000). (10.1103/PhysRevB.61.14219) / Phys. Rev. B by MP Anantram (2000)
  13. Nemec, N., Tomanek, D. & Cuniberti, G. Contact dependence of carrier injection in carbon nanotubes: an ab initio study. Phys. Rev. Lett. 96, 076802 (2006). (10.1103/PhysRevLett.96.076802) / Phys. Rev. Lett. by N Nemec (2006)
  14. Nemec, N., Tomanek, D. & Cuniberti, G. Modeling extended contacts for nanotube and graphene devices. Phys. Rev. B 77, 125420 (2008). (10.1103/PhysRevB.77.125420) / Phys. Rev. B by N Nemec (2008)
  15. Giovannetti, G. et al. Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803 (2008). (10.1103/PhysRevLett.101.026803) / Phys. Rev. Lett. by G Giovannetti (2008)
  16. Khomyakov, P. A. et al. First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B 79, 195425 (2009). (10.1103/PhysRevB.79.195425) / Phys. Rev. B by PA Khomyakov (2009)
  17. Huard, B., Stander, N., Sulpizio, J. A. & Goldhaber-Gordon, D. Evidence of the role of contacts on the observed electron–hole asymmetry in graphene. Phys. Rev. B 78, 121402(R) (2008). (10.1103/PhysRevB.78.121402) / Phys. Rev. B by B Huard (2008)
  18. Golizadeh-Mojarad, R. & Datta, S. Effect of contact induced states on minimum conductivity in graphene. Phys. Rev. B 79, 085410 (2009). (10.1103/PhysRevB.79.085410) / Phys. Rev. B by R Golizadeh-Mojarad (2009)
  19. Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nature Phys. 4, 144–148 (2008). (10.1038/nphys781) / Nature Phys. by J Martin (2008)
  20. Cheianov, V. V. & Fal'ko, V. Selective transmission of Dirac electrons and ballistic magnetoresistance of n–p junctions in graphene. Phys. Rev. B 74, 041403(R) (2006). (10.1103/PhysRevB.74.041403) / Phys. Rev. B by VV Cheianov (2006)
  21. Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nature Phys. 2, 620–625 (2006). (10.1038/nphys384) / Nature Phys. by MI Katsnelson (2006)
  22. Cheianov, V. V., Fal'ko, V. & Altshuler, B. L. The focusing of electron flow and a Veselago lens in graphene p–n junctions. Science 315, 1252–1255 (2007). (10.1126/science.1138020) / Science by VV Cheianov (2007)
  23. Fogler, M. M., Novikov, D. S., Glazman, L. I. & Shkovskii, B. I. Effect of disorder on a graphene p–n junction. Phys. Rev. B 77, 075420 (2008). (10.1103/PhysRevB.77.075420) / Phys. Rev. B by MM Fogler (2008)
  24. Cayssol, J., Huard, B., & Goldhaber-Gordon D. Contact resistance and shot noise in graphene transistors. Phys. Rev. B 79, 075428 (2009). (10.1103/PhysRevB.79.075428) / Phys. Rev. B by J Cayssol (2009)
  25. Sonin, E. B. Effect of Klein tunneling on conductance and shot noise in ballistic graphene. Phys. Rev. B 79, 195438 (2009). (10.1103/PhysRevB.79.195438) / Phys. Rev. B by EB Sonin (2009)
  26. Low, T., Hong, S., Appenzeller, J., Datta, S. & Lundstrom, M. S. Conductance asymmetry of graphene p–n junction. IEEE Trans. Electron. Dev. 56, 1292–1299 (2009). (10.1109/TED.2009.2017646) / IEEE Trans. Electron. Dev. by T Low (2009)
  27. Tersoff, J. & Hamann, D. R. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 50, 1998–2001 (1983). (10.1103/PhysRevLett.50.1998) / Phys. Rev. Lett. by J Tersoff (1983)
  28. Schroder, D. K. Semiconductor Material and Device Characterization (Wiley, 1998). / Semiconductor Material and Device Characterization by DK Schroder (1998)
  29. Kane, A. A. et al. Graphitic electrical contacts to metallic single-walled carbon nanotubes using Pt electrodes. Nano Lett. 9, 3586–3591 (2009). (10.1021/nl9017995) / Nano Lett. by AA Kane (2009)
  30. Franklin, A. D. & Chen, Z. Length scaling of carbon nanotube transistors. Nature Nanotech. 5, 858–862 (2010). (10.1038/nnano.2010.220) / Nature Nanotech. by AD Franklin (2010)
Dates
Type When
Created 14 years, 6 months ago (Feb. 6, 2011, 1:44 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 8:23 p.m.)
Indexed 2 weeks, 4 days ago (Aug. 7, 2025, 4:58 a.m.)
Issued 14 years, 6 months ago (Feb. 6, 2011)
Published 14 years, 6 months ago (Feb. 6, 2011)
Published Online 14 years, 6 months ago (Feb. 6, 2011)
Published Print 14 years, 5 months ago (March 1, 2011)
Funders 0

None

@article{Xia_2011, title={The origins and limits of metal–graphene junction resistance}, volume={6}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2011.6}, DOI={10.1038/nnano.2011.6}, number={3}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Xia, Fengnian and Perebeinos, Vasili and Lin, Yu-ming and Wu, Yanqing and Avouris, Phaedon}, year={2011}, month=feb, pages={179–184} }