Bibliography
Tedsree, K., Li, T., Jones, S., Chan, C. W. A., Yu, K. M. K., Bagot, P. A. J., Marquis, E. A., Smith, G. D. W., & Tsang, S. C. E. (2011). Hydrogen production from formic acid decomposition at room temperature using a AgâPd coreâshell nanocatalyst. Nature Nanotechnology, 6(5), 302â307.
References
29
Referenced
1,079
- Zhao, T. S. Microfuel Cells: Principles and Applications (Elsevier, 2009). / Microfuel Cells: Principles and Applications by TS Zhao (2009)
-
Van den Berg, A. W. C. & Arean, C. O. Materials for hydrogen storage: current research trends and perspectives. Chem. Commun. 668–681 (2008).
(
10.1039/B712576N
) -
Springer, T. E., Rockward, T., Zawodzinski, T. A. & Gottesfeld, S. Model for polymer electrolyte fuel cell operation on reformate feed–effects of CO, H2 dilution, and high fuel utilization. J. Electrochem. Soc. 148, A11–A23 (2001).
(
10.1149/1.1344516
) / J. Electrochem. Soc. by TE Springer (2001) -
Loges, B., Boddien, A., Gartner, F., Junge, H. & Beller, M. Catalytic generation of hydrogen from formic acid and its derivatives: useful hydrogen storage materials. Top. Catal. 53, 902–914 (2010).
(
10.1007/s11244-010-9522-8
) / Top. Catal. by B Loges (2010) -
Loges, B., Boddien, A., Junge, H. & Beller, M. Controlled generation of hydrogen from formic acid amine adducts at room temperature and application in H2/O2 fuel cells. Angew. Chem. Int. Ed. 47, 3962–3965 (2008).
(
10.1002/anie.200705972
) / Angew. Chem. Int. Ed. by B Loges (2008) -
Fellay, C., Yan, N., Dyson, P. J. & Laurenczy, G. Selective formic acid decomposition for high-pressure hydrogen: a mechanistic study. Chem-Eur. J. 15, 3752–3760 (2009).
(
10.1002/chem.200801824
) / Chem-Eur. J. by C Fellay (2009) -
Li, X. L., Ma, X. Y., Shi, F. & Deng, Y. Q. Hydrogen generation from formic acid decomposition with a ruthenium catalyst promoted by functionalized ionic liquids. ChemSusChem 3, 71–74 (2010).
(
10.1002/cssc.200900218
) / ChemSusChem by XL Li (2010) -
Ruthven, D. M. & Upadhye, R. S. Catalytic decomposition of aqueous formic acid over suspended palladium catalysts. J. Catal. 21, 39–47 (1971).
(
10.1016/0021-9517(71)90118-7
) / J. Catal. by DM Ruthven (1971) -
Ojeda, M. & Iglesia, E. Formic acid dehydrogenation on Au-based catalysts at near-ambient temperatures. Angew. Chem. Int. Ed. 48, 4800–4803 (2009).
(
10.1002/anie.200805723
) / Angew. Chem. Int. Ed. by M Ojeda (2009) -
Zhou, X. C. et al. High-quality hydrogen from the catalyzed decomposition of formic acid by Pd–Au/C and Pd–Ag/C. Chem. Commun. 3540–3542 (2008).
(
10.1039/b803661f
) -
Huang, Y., Zhou, X., Yin, M., Liu, C. & Xing, W. Novel PdAu@Au/C core–shell catalyst: superior activity and selectivity in formic acid decomposition for hydrogen generation, Chem. Mater. 22, 5122–5128 (2010).
(
10.1021/cm101285f
) / Chem. Mater. by Y Huang (2010) -
Ruban, A., Hammer, B., Stoltze, P., Skriver, H. L. & Norskov, J. K. Surface electronic structure and reactivity of transition noble metals. J. Mol. Catal. A 115, 421–429 (1997).
(
10.1016/S1381-1169(96)00348-2
) / J. Mol. Catal. A by A Ruban (1997) -
Larsen, R., Ha, S., Zakzeski, J. & Masel, R. I. Unusually active palladium-based catalysts for the electrooxidation of formic acid. J. Power Sources 157, 78–84 (2006).
(
10.1016/j.jpowsour.2005.07.066
) / J. Power Sources by R Larsen (2006) -
Borodko, Y. et al. Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV–Raman and FTIR. J. Phys. Chem. B 110, 023052 (2006).
(
10.1021/jp063338+
) / J. Phys. Chem. B by Y Borodko (2006) -
Tao, F. et al. Reaction-driven restructuring of Rh–Pd and Pt–Pd core–shell nanoparticles. Science 322, 932–934 (2008).
(
10.1126/science.1164170
) / Science by F Tao (2008) -
Kobayashi, H. et al. Hydrogen absorption in the core/shell interface of Pd/Pt nanoparticles. J. Am. Chem. Soc. 130, 1818–1819 (2008).
(
10.1021/ja078126k
) / J. Am. Chem. Soc. by H Kobayashi (2008) -
Zhong, C. et al. Nanostructured catalysts in fuel cells. Nanotechnology 21, 1–20 (2010).
(
10.1088/0957-4484/21/6/062001
) / Nanotechnology by C Zhong (2010) -
Mazumder, V., Chi, M., More, K. L. & Sun, S. Core/shell Pd/FePt nanoparticles as an active and durable catalyst for the oxygen reduction reaction. J. Am. Chem. Soc. 132, 7848–7849 (2010).
(
10.1021/ja1024436
) / J. Am. Chem. Soc. by V Mazumder (2010) -
Kitchin, J. R., Norskov, J. K., Barteau, M. A. & Chen, J. G. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys. Rev. Lett. 93, 156801 (2004).
(
10.1103/PhysRevLett.93.156801
) / Phys. Rev. Lett. by JR Kitchin (2004) -
Tang, W. & Henkelman, G. Charge redistribution in core–shell nanoparticles to promote oxygen reduction. J. Chem. Phys. 130, 194504 (2009).
(
10.1063/1.3134684
) / J. Chem. Phys. by W Tang (2009) -
Lossack, A. M., Bartels, D. M. & Roduner, E. Rate constants and kinetic isotope effects in hydrogen abstractions by H from formic acid. Res. Chem. Intermed. 27, 475–483 (2001).
(
10.1163/156856701104202129
) / Res. Chem. Intermed. by AM Lossack (2001) -
Himeda, Y., Onozawa-Komatsuzaki, M., Sugihara, H. & Kasuga, K. Simultaneous tuning of activity and water solubility of complex catalysts by acid–base equilibrium of ligands for conversion of carbon dioxide. Organometallics 26, 702–712 (2007).
(
10.1021/om060899e
) / Organometallics by Y Himeda (2007) -
Toshima, N. & Yonezawa, T. Bimetallic nanoparticles—novel materials for chemical and physical applications. New J. Chem. 22, 1179–1201 (1998).
(
10.1039/a805753b
) / New J. Chem. by N Toshima (1998) -
Bagot, P. A. J., de Bocarmé, T. V., Cerezo, A. & Smith, G. D. W. 3D atom probe study of gas adsorption and reaction on alloy catalyst surfaces I: instrumentation. Surf. Sci. 600, 3028–3035 (2006).
(
10.1016/j.susc.2006.05.026
) / Surf. Sci. by PAJ Bagot (2006) -
Bagot, P. A. J., Cerezo, A. & Smith, G. D. W. 3D atom probe of gaseous adsorption on alloy catalyst surfaces III: ternary alloys—NO on Pt–Rh–Ru and Pt–Rh–Ir. Surf. Sci. 602, 1381–1391 (2008).
(
10.1016/j.susc.2008.01.041
) / Surf. Sci. by PAJ Bagot (2008) -
Yeung, C. M. Y. et al. Engineering Pt in ceria for a maximum metal-support interaction in catalysis. J. Am. Chem. Soc. 127, 18010–18011 (2005).
(
10.1021/ja056102c
) / J. Am. Chem. Soc. by CMY Yeung (2005) -
Tedsree, K., Kong, A. T. S. & Tsang, S. C. Formate as a surface probe for ruthenium nanoparticles in solution 13C NMR spectroscopy. Angew. Chem. Int. Ed. 48, 1443–1446 (2009).
(
10.1002/anie.200805240
) / Angew. Chem. Int. Ed. by K Tedsree (2009) -
Kim, K. S. & Barteau, M. A. Structural dependence of the selectivity of formic-acid decomposition on faceted TiO2 (001) surfaces. Langmuir 6, 1485–1488 (1990).
(
10.1021/la00099a009
) / Langmuir by KS Kim (1990) -
Hoshi, N., Nakamura, M. & Kida, K. Structural effects on the oxidation of formic acid on the high index planes of palladium. Electrochem. Commun. 9, 279–282 (2007).
(
10.1016/j.elecom.2006.09.023
) / Electrochem. Commun. by N Hoshi (2007)
Dates
Type | When |
---|---|
Created | 14 years, 4 months ago (April 10, 2011, 1:19 p.m.) |
Deposited | 2 years, 3 months ago (May 18, 2023, 8:22 p.m.) |
Indexed | 2 days, 14 hours ago (Aug. 21, 2025, 12:44 p.m.) |
Issued | 14 years, 4 months ago (April 10, 2011) |
Published | 14 years, 4 months ago (April 10, 2011) |
Published Online | 14 years, 4 months ago (April 10, 2011) |
Published Print | 14 years, 3 months ago (May 1, 2011) |
@article{Tedsree_2011, title={Hydrogen production from formic acid decomposition at room temperature using a Ag–Pd core–shell nanocatalyst}, volume={6}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2011.42}, DOI={10.1038/nnano.2011.42}, number={5}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Tedsree, Karaked and Li, Tong and Jones, Simon and Chan, Chun Wong Aaron and Yu, Kai Man Kerry and Bagot, Paul A. J. and Marquis, Emmanuelle A. and Smith, George D. W. and Tsang, Shik Chi Edman}, year={2011}, month=apr, pages={302–307} }