Crossref journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Bibliography

Chanthbouala, A., Crassous, A., Garcia, V., Bouzehouane, K., Fusil, S., Moya, X., Allibe, J., Dlubak, B., Grollier, J., Xavier, S., Deranlot, C., Moshar, A., Proksch, R., Mathur, N. D., Bibes, M., & Barthélémy, A. (2011). Solid-state memories based on ferroelectric tunnel junctions. Nature Nanotechnology, 7(2), 101–104.

Authors 16
  1. André Chanthbouala (first)
  2. Arnaud Crassous (additional)
  3. Vincent Garcia (additional)
  4. Karim Bouzehouane (additional)
  5. Stéphane Fusil (additional)
  6. Xavier Moya (additional)
  7. Julie Allibe (additional)
  8. Bruno Dlubak (additional)
  9. Julie Grollier (additional)
  10. Stéphane Xavier (additional)
  11. Cyrile Deranlot (additional)
  12. Amir Moshar (additional)
  13. Roger Proksch (additional)
  14. Neil D. Mathur (additional)
  15. Manuel Bibes (additional)
  16. Agnès Barthélémy (additional)
References 31 Referenced 556
  1. Schmid, H. Some symmetry aspects of ferroics and single phase multiferroics. J. Phys. Condens. Matter 20, 434201 (2008). (10.1088/0953-8984/20/43/434201) / J. Phys. Condens. Matter by H Schmid (2008)
  2. Ikeda, S. et al. Magnetic tunnel junctions for spintronic memories and beyond. IEEE Trans. Electron. Dev. 54, 991–1002 (2007). (10.1109/TED.2007.894617) / IEEE Trans. Electron. Dev. by S Ikeda (2007)
  3. Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995). (10.1103/PhysRevLett.74.3273) / Phys. Rev. Lett. by JS Moodera (1995)
  4. Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nature Mater. 6, 833–840 (2007). (10.1038/nmat2023) / Nature Mater. by R Waser (2007)
  5. Yang, J. J. et al. Memristive switching mechanisms for metal/oxide/metal nanodevices. Nature Nanotech. 3, 429–433 (2008). (10.1038/nnano.2008.160) / Nature Nanotech. by JJ Yang (2008)
  6. Jo, S. H., Kim, K-H. & Lu, W. High-density crossbar arrays based on a Si memristive system. Nano Lett. 9, 870–874 (2009). (10.1021/nl8037689) / Nano Lett. by SH Jo (2009)
  7. Dawber, M., Rabe, K. M. & Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005). (10.1103/RevModPhys.77.1083) / Rev. Mod. Phys. by M Dawber (2005)
  8. Velev, J. P. et al. Magnetic tunnel junctions with ferroelectric barriers: predictions of four resistance states from first principles. Nano Lett. 9, 427–432 (2009). (10.1021/nl803318d) / Nano Lett. by JP Velev (2009)
  9. Tsymbal, E. Y. & Kohlstedt, H. Tunneling across a ferroelectric. Science 313, 181–183 (2006). (10.1126/science.1126230) / Science by EY Tsymbal (2006)
  10. Zhuravlev, M. Y., Sabirianov, R. F., Jaswal, S. S. & Tsymbal, E. Y. Giant electroresistance in ferroelectric tunnel junctions. Phys. Rev. Lett. 94, 246802 (2005). (10.1103/PhysRevLett.94.246802) / Phys. Rev. Lett. by MY Zhuravlev (2005)
  11. Kohlstedt, H., Pertsev, N. A., Rodriguez Contreras, J. & Waser, R. Theoretical current–voltage characteristics of ferroelectric tunnel junctions. Phys. Rev. B 72, 125341 (2005). (10.1103/PhysRevB.72.125341) / Phys. Rev. B by H Kohlstedt (2005)
  12. Esaki, L., Laibowitz, R. B. & Stiles, P. J. Polar switch. IBM Tech. Discl. Bull. 13, 2161 (1971). / IBM Tech. Discl. Bull. by L Esaki (1971)
  13. Tybell, T., Ahn, C. H. & Triscone, J-M. Ferroelectricity in thin perovskite films. Appl. Phys. Lett. 75, 856–858 (1999). (10.1063/1.124536) / Appl. Phys. Lett. by T Tybell (1999)
  14. Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003). (10.1038/nature01501) / Nature by J Junquera (2003)
  15. Fong, D. D. et al. Ferroelectricity in ultrathin perovskite films. Science 304, 1650–1653 (2004). (10.1126/science.1098252) / Science by DD Fong (2004)
  16. Kim, Y. S. et al. Critical thickness of ultrathin ferroelectric BaTiO3 films. Appl. Phys. Lett. 86, 102907 (2005). (10.1063/1.1880443) / Appl. Phys. Lett. by YS Kim (2005)
  17. Rodriguez-Contreras, J. et al. Resistive switching in metal–ferroelectric–metal junctions. Appl. Phys. Lett. 83, 4595–4597 (2003). (10.1063/1.1627944) / Appl. Phys. Lett. by J Rodriguez-Contreras (2003)
  18. Kohlstedt, H. et al. Method to distinguish ferroelectric from nonferroelectric origin in case of resistive switching in ferroelectric capacitors. Appl. Phys. Lett. 92, 062907 (2008). (10.1063/1.2841917) / Appl. Phys. Lett. by H Kohlstedt (2008)
  19. Garcia, V. et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460, 81–84 (2009). (10.1038/nature08128) / Nature by V Garcia (2009)
  20. Maksymovych, P. et al. Polarisation control of electron tunneling into ferroelectric surfaces. Science 324, 1421–1425 (2009). (10.1126/science.1171200) / Science by P Maksymovych (2009)
  21. Gruverman, A. et al. Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. Nano Lett. 9, 3539–3543 (2009). (10.1021/nl901754t) / Nano Lett. by A Gruverman (2009)
  22. Choi, K. J. et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005–1009 (2004). (10.1126/science.1103218) / Science by KJ Choi (2004)
  23. Kalinin, S. V. et al. The role of electrochemical phenomena in scanning probe microscopy of ferroelectric thin films. ACS Nano 26, 5683–5691 (2001). / ACS Nano by SV Kalinin (2001)
  24. Wang, R. V. et al. Reversible chemical switching of a ferroelectric film. Phys. Rev. Lett. 102, 047601 (2009). (10.1103/PhysRevLett.102.047601) / Phys. Rev. Lett. by RV Wang (2009)
  25. Bristowe, N. C. et al. Electrochemical ferroelectric switching. Preprint at http://arXiv.org/1108.2208 (2011).
  26. Garcia, V. et al. Ferroelectric control of spin polarisation. Science 327, 1106–1110 (2010). (10.1126/science.1184028) / Science by V Garcia (2010)
  27. Brinkman, W. F., Dynes, R. C. & Rowell, J. M. Tunneling conductance of asymmetrical barriers. J. Appl. Phys. 41, 1915–1921 (1970). (10.1063/1.1659141) / J. Appl. Phys. by WF Brinkman (1970)
  28. International Technology Roadmap for Semiconductors, 2009; available at http://www.itrs.net/links/2009itrs/home2009.htm .
  29. Stengel, M., Vanderbilt, D. & Spaldin, N. A. Enhancement of ferroelectricity at metal–oxide interfaces. Nature Mater. 8, 392–397 (2009). (10.1038/nmat2429) / Nature Mater. by M Stengel (2009)
  30. Highland, M. J. et al. Polarisation switching without domain formation at the intrinsic coercive field in ultrathin ferroelectric PbTiO3 . Phys. Rev. Lett. 105, 167601 (2010). (10.1103/PhysRevLett.105.167601) / Phys. Rev. Lett. by MJ Highland (2010)
  31. Rodriguez, B. J., Callahan, C., Kalinin, S. V. & Proksch, R. Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology 18, 475504 (2007). (10.1088/0957-4484/18/47/475504) / Nanotechnology by BJ Rodriguez (2007)
Dates
Type When
Created 13 years, 8 months ago (Dec. 4, 2011, 2:44 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 8:22 p.m.)
Indexed 18 hours, 3 minutes ago (Aug. 22, 2025, 12:50 a.m.)
Issued 13 years, 8 months ago (Dec. 4, 2011)
Published 13 years, 8 months ago (Dec. 4, 2011)
Published Online 13 years, 8 months ago (Dec. 4, 2011)
Published Print 13 years, 6 months ago (Feb. 1, 2012)
Funders 0

None

@article{Chanthbouala_2011, title={Solid-state memories based on ferroelectric tunnel junctions}, volume={7}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2011.213}, DOI={10.1038/nnano.2011.213}, number={2}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Chanthbouala, André and Crassous, Arnaud and Garcia, Vincent and Bouzehouane, Karim and Fusil, Stéphane and Moya, Xavier and Allibe, Julie and Dlubak, Bruno and Grollier, Julie and Xavier, Stéphane and Deranlot, Cyrile and Moshar, Amir and Proksch, Roger and Mathur, Neil D. and Bibes, Manuel and Barthélémy, Agnès}, year={2011}, month=dec, pages={101–104} }