Crossref journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Bibliography

Lahiri, J., Lin, Y., Bozkurt, P., Oleynik, I. I., & Batzill, M. (2010). An extended defect in graphene as a metallic wire. Nature Nanotechnology, 5(5), 326–329.

Authors 5
  1. Jayeeta Lahiri (first)
  2. You Lin (additional)
  3. Pinar Bozkurt (additional)
  4. Ivan I. Oleynik (additional)
  5. Matthias Batzill (additional)
References 30 Referenced 938
  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007). (10.1038/nmat1849) / Nature Mater. by AK Geim (2007)
  2. Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009). (10.1126/science.1158877) / Science by AK Geim (2009)
  3. Jung, N. et al. Charge transfer chemical doping of few layer graphenes: charge distribution and band gap formation. Nano Lett. 9, 4133–4137 (2009). (10.1021/nl902362q) / Nano Lett. by N Jung (2009)
  4. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009). (10.1038/nature08105) / Nature by Y Zhang (2009)
  5. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009). (10.1103/RevModPhys.81.109) / Rev. Mod. Phys. by AH Castro Neto (2009)
  6. Ritter, K. A. & Lyding, J. W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nature Mater. 8, 235–242 (2009). (10.1038/nmat2378) / Nature Mater. by KA Ritter (2009)
  7. Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996). (10.1103/PhysRevB.54.17954) / Phys. Rev. B by K Nakada (1996)
  8. Girit, C. O. et al. Graphene at the edge: stability and dynamics. Science 323, 1705–1708 (2009). (10.1126/science.1166999) / Science by CO Girit (2009)
  9. Li, X. L., Wang, X. R., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008). (10.1126/science.1150878) / Science by XL Li (2008)
  10. Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009). (10.1038/nature07872) / Nature by DV Kosynkin (2009)
  11. Wang, X. et al. N-doping of graphene through electrothermal reactions with ammonia. Science 324, 768–771 (2009). (10.1126/science.1170335) / Science by X Wang (2009)
  12. Koskinen, P., Malola, S. & Häkkinen, H. Self-passivating edge reconstructions of graphene. Phys. Rev. Lett. 101, 115502 (2008). (10.1103/PhysRevLett.101.115502) / Phys. Rev. Lett. by P Koskinen (2008)
  13. Koskinen, P., Malola, S. & Häkkinen, H. Evidence for graphene edges beyond zigzag and armchair. Phys. Rev. B 80, 073401 (2009). (10.1103/PhysRevB.80.073401) / Phys. Rev. B by P Koskinen (2009)
  14. Hashimoto, A., Suenaga, K., Gloter, A., Urita, K. & Iijima, S. Direct evidence for atomic defects in graphene layers. Nature 430, 870–873 (2004). (10.1038/nature02817) / Nature by A Hashimoto (2004)
  15. Lusk, M. T. & Carr, L. D. Nanoengineering defect structures on graphene. Phys. Rev. Lett. 100, 175503 (2008). (10.1103/PhysRevLett.100.175503) / Phys. Rev. Lett. by MT Lusk (2008)
  16. Meyer, J. C. et al. direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8, 3582–3586 (2008). (10.1021/nl801386m) / Nano Lett. by JC Meyer (2008)
  17. Botello-Méndez, A. R. et al. Spin polarized conductance in hybrid graphene nanoribbons using 5–7 defects. ACS Nano 3, 3606–3612 (2009). (10.1021/nn900614x) / ACS Nano by AR Botello-Méndez (2009)
  18. Okada, S., Nakada, K., Kuwabara, K., Daigoku, K. & Kawai, T. Ferromagnetic spin ordering on carbon nanotubes with topological line defects. Phys. Rev. B 74, 121412 (2006). (10.1103/PhysRevB.74.121412) / Phys. Rev. B by S Okada (2006)
  19. Simonis, P. et al. STM study of a grain boundary in graphite. Surf. Sci. 511, 319–322 (2002). (10.1016/S0039-6028(02)01511-X) / Surf. Sci. by P Simonis (2002)
  20. Gamo, Y., Nagashima, A., Wakabayashi, M., Terai, M. & Oshima, C. Atomic structure of monolayer graphite formed on Ni(111). Surf. Sci. 374, 61–64 (1997). (10.1016/S0039-6028(96)00785-6) / Surf. Sci. by Y Gamo (1997)
  21. Terrones, H. et al. New metallic allotropes of planar and tubular carbon. Phys. Rev. Lett. 84, 1716–1719 (2000). (10.1103/PhysRevLett.84.1716) / Phys. Rev. Lett. by H Terrones (2000)
  22. White, C. T. & Mintmire, J. Fundamental properties of single-wall carbon nanotubes. J. Phys. Chem. B 109, 52–65 (2005). (10.1021/jp047416+) / J. Phys. Chem. B by CT White (2005)
  23. Charlier, J.-C., Blasé, X. & Roche, S. Electronic and transport properties of nanotubes. Rev. Mod. Phys. 79, 677–732 (2007). (10.1103/RevModPhys.79.677) / Rev. Mod. Phys. by J-C Charlier (2007)
  24. Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009). (10.1038/nature07719) / Nature by KS Kim (2009)
  25. Haick, H. & Cahen, D. Making contact: connecting molecules electrically to the macroscopic world. Prog. Surf. Sci. 83, 217–261 (2008). (10.1016/j.progsurf.2008.04.002) / Prog. Surf. Sci. by H Haick (2008)
  26. Bunch, J. S. et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008). (10.1021/nl801457b) / Nano Lett. by JS Bunch (2008)
  27. Nagashima, A., Tejima, N. & Oshima, C. Electronic states of the pristine and alkali-metal-intercalated monolayer graphite/Ni(111) systems. Phys. Rev. B 50, 17487–17495 (1994). (10.1103/PhysRevB.50.17487) / Phys. Rev. B by A Nagashima (1994)
  28. Rosei, R. et al. Structure of graphitic carbon on Ni(111)—a surface extended-energy-loss fine-structure study. Phys. Rev. B 28, 1161–1164 (1983). (10.1103/PhysRevB.28.1161) / Phys. Rev. B by R Rosei (1983)
  29. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). (10.1103/PhysRevB.54.11169) / Phys. Rev. B by G Kresse (1996)
  30. Khomyakov, P. A. et al. First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B 79, 195425 (2009). (10.1103/PhysRevB.79.195425) / Phys. Rev. B by PA Khomyakov (2009)
Dates
Type When
Created 15 years, 4 months ago (March 28, 2010, 1:24 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 8:20 p.m.)
Indexed 1 day, 7 hours ago (Aug. 20, 2025, 9:13 a.m.)
Issued 15 years, 4 months ago (March 28, 2010)
Published 15 years, 4 months ago (March 28, 2010)
Published Online 15 years, 4 months ago (March 28, 2010)
Published Print 15 years, 3 months ago (May 1, 2010)
Funders 0

None

@article{Lahiri_2010, title={An extended defect in graphene as a metallic wire}, volume={5}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2010.53}, DOI={10.1038/nnano.2010.53}, number={5}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Lahiri, Jayeeta and Lin, You and Bozkurt, Pinar and Oleynik, Ivan I. and Batzill, Matthias}, year={2010}, month=mar, pages={326–329} }