10.1038/nnano.2010.279
Crossref journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Bibliography

Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., & Kis, A. (2011). Single-layer MoS2 transistors. Nature Nanotechnology, 6(3), 147–150.

Authors 5
  1. B. Radisavljevic (first)
  2. A. Radenovic (additional)
  3. J. Brivio (additional)
  4. V. Giacometti (additional)
  5. A. Kis (additional)
References 40 Referenced 13,639
  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). (10.1126/science.1102896) / Science by KS Novoselov (2004)
  2. Berger, C. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004). (10.1021/jp040650f) / J. Phys. Chem. B by C Berger (2004)
  3. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005). (10.1038/nature04233) / Nature by KS Novoselov (2005)
  4. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005). (10.1038/nature04235) / Nature by Y Zhang (2005)
  5. Du, X., Skachko, I., Duerr, F., Luican, A. & Andrei, E. Y. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462, 192–195 (2009). (10.1038/nature08522) / Nature by X Du (2009)
  6. Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008). (10.1016/j.ssc.2008.02.024) / Solid State Commun. by KI Bolotin (2008)
  7. The International Technology Roadmap for Semiconductors. http://www.itrs.net/Links/2009ITRS/Home2009.htm (2009).
  8. Han, M. Y., Ozyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007). (10.1103/PhysRevLett.98.206805) / Phys. Rev. Lett. by MY Han (2007)
  9. Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008). (10.1126/science.1150878) / Science by X Li (2008)
  10. Jiao, L., Zhang, L., Wang, X., Diankov, G. & Dai, H. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009). (10.1038/nature07919) / Nature by L Jiao (2009)
  11. Sols, F., Guinea, F. & Neto, A. H. C. Coulomb blockade in graphene nanoribbons. Phys. Rev. Lett. 99, 166803 (2007). (10.1103/PhysRevLett.99.166803) / Phys. Rev. Lett. by F Sols (2007)
  12. Yoon, Y. & Guo, J. Effect of edge roughness in graphene nanoribbon transistors. Appl. Phys. Lett. 91, 073103 (2007). (10.1063/1.2769764) / Appl. Phys. Lett. by Y Yoon (2007)
  13. Obradovic, B. et al. Analysis of graphene nanoribbons as a channel material for field-effect transistors. Appl. Phys. Lett. 88, 142102 (2006). (10.1063/1.2191420) / Appl. Phys. Lett. by B Obradovic (2006)
  14. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009). (10.1038/nature08105) / Nature by Y Zhang (2009)
  15. Xia, F., Farmer, D. B., Lin, Y.-M. & Avouris, P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10, 715–718 (2010). (10.1021/nl9039636) / Nano Lett. by F Xia (2010)
  16. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010). (10.1103/PhysRevLett.105.136805) / Phys. Rev. Lett. by KF Mak (2010)
  17. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005). (10.1073/pnas.0502848102) / Proc. Natl Acad. Sci. USA by KS Novoselov (2005)
  18. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010). (10.1021/nl903868w) / Nano Lett. by A Splendiani (2010)
  19. Banerjee, S., Richardson, W., Coleman, J. & Chatterjee, A. A new three-terminal tunnel device. Electron Dev. Lett. 8, 347–349 (1987). (10.1109/EDL.1987.26655) / Electron Dev. Lett. by S Banerjee (1987)
  20. Frindt, R. F. Single crystals of MoS2 several molecular layers thick. J. Appl. Phys. 37, 1928–1929 (1966). (10.1063/1.1708627) / J. Appl. Phys. by RF Frindt (1966)
  21. Joensen, P., Frindt, R. F. & Morrison, S. R. Single-layer MoS2 . Mater. Res. Bull. 21, 457–461 (1986). (10.1016/0025-5408(86)90011-5) / Mater. Res. Bull. by P Joensen (1986)
  22. Schumacher, A., Scandella, L., Kruse, N. & Prins, R. Single-layer MoS2 on mica: studies by means of scanning force microscopy. Surf. Sci. Lett. 289, L595–L598 (1993). / Surf. Sci. Lett. by A Schumacher (1993)
  23. Kam, K. K. & Parkinson, B. A. Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. J. Phys. Chem. 86, 463–467 (1982). (10.1021/j100393a010) / J. Phys. Chem. by KK Kam (1982)
  24. Feldman, Y., Wasserman, E., Srolovitz, D. J. & Tenne, R. High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222–225 (1995). (10.1126/science.267.5195.222) / Science by Y Feldman (1995)
  25. Remskar, M. et al. Self-assembly of subnanometer-diameter single-wall MoS2 nanotubes. Science 292, 479–481 (2001). (10.1126/science.1059011) / Science by M Remskar (2001)
  26. Schwierz, F. Graphene transistors. Nature Nanotech. 5, 487–496 (2010). (10.1038/nnano.2010.89) / Nature Nanotech. by F Schwierz (2010)
  27. Benameur, M., Radisavljevic, B., Sahoo, S., Berger, H. & Kis, A. Visibility of dichalcogenide nanolayers. http://lanl.arxiv.org/abs/1006.1048v1 (2010).
  28. Ishigami, M., Chen, J. H., Cullen, W. G., Fuhrer, M. S. & Williams, E. D. Atomic structure of graphene on SiO2 . Nano Lett. 7, 1643–1648 (2007). (10.1021/nl070613a) / Nano Lett. by M Ishigami (2007)
  29. Ayari, A., Cobas, E., Ogundadegbe, O. & Fuhrer, M. S. Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J. App. Phys. 101, 014507 (2007). (10.1063/1.2407388) / J. App. Phys. by A Ayari (2007)
  30. Fivaz, R. & Mooser, E. Mobility of charge carriers in semiconducting layer structures. Phys. Rev. 163, 743–755 (1967). (10.1103/PhysRev.163.743) / Phys. Rev. by R Fivaz (1967)
  31. Debdeep, J. & Aniruddha, K. Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 98, 136805 (2007). (10.1103/PhysRevLett.98.136805) / Phys. Rev. Lett. by J Debdeep (2007)
  32. Chen, F., Xia, J., Ferry, D. K. & Tao, N. Dielectric screening enhanced performance in graphene FET. Nano Lett. 9, 2571–2574 (2009). (10.1021/nl900725u) / Nano Lett. by F Chen (2009)
  33. Bohr, M. T., Chau, R. S., Ghani, T. & Mistry, K. The high-k solution. IEEE Spectrum 44, 29–35 (2007). (10.1109/MSPEC.2007.4337663) / IEEE Spectrum by MT Bohr (2007)
  34. Mistry, K. et al. A 45 nm logic technology with high-k + metal gate transistors, strained silicon, 9 Cu interconnect layers, 193 nm dry patterning, and 100% Pb-free packaging. IEEE Tech. Dig. IEDM 247–250 (2007). (10.1109/IEDM.2007.4418914)
  35. Lemme, M. C., Echtermeyer, T. J., Baus, M. & Kurz, H. A graphene field-effect device. IEEE Electron Dev. Lett. 28, 282–284 (2007). (10.1109/LED.2007.891668) / IEEE Electron Dev. Lett. by MC Lemme (2007)
  36. Fonoberov, V. A. & Balandin, A. A. Giant enhancement of the carrier mobility in silicon nanowires with diamond coating. Nano Lett. 6, 2442–2446 (2006). (10.1021/nl061554o) / Nano Lett. by VA Fonoberov (2006)
  37. Gomez, L., Aberg, I. & Hoyt, J. L. Electron transport in strained-silicon directly on insulator ultrathin-body n-MOSFETs with body thickness ranging from 2 to 25 nm. IEEE Electron Dev. Lett. 28, 285–287 (2007). (10.1109/LED.2007.891795) / IEEE Electron Dev. Lett. by L Gomez (2007)
  38. Duan, X. et al. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425, 274–278 (2003). (10.1038/nature01996) / Nature by X Duan (2003)
  39. Liao, L. et al. High-speed graphene transistors with a self-aligned nanowire gate. Nature 467, 305–308 (2010). (10.1038/nature09405) / Nature by L Liao (2010)
  40. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010). (10.1038/nnano.2010.172) / Nature Nanotech. by CR Dean (2010)
Dates
Type When
Created 14 years, 6 months ago (Jan. 30, 2011, 10:38 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 4:20 p.m.)
Indexed 10 hours, 29 minutes ago (Aug. 24, 2025, 7:01 p.m.)
Issued 14 years, 6 months ago (Jan. 30, 2011)
Published 14 years, 6 months ago (Jan. 30, 2011)
Published Online 14 years, 6 months ago (Jan. 30, 2011)
Published Print 14 years, 5 months ago (March 1, 2011)
Funders 0

None

@article{Radisavljevic_2011, title={Single-layer MoS2 transistors}, volume={6}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2010.279}, DOI={10.1038/nnano.2010.279}, number={3}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Radisavljevic, B. and Radenovic, A. and Brivio, J. and Giacometti, V. and Kis, A.}, year={2011}, month=jan, pages={147–150} }