Crossref journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Bibliography

Lee, S. W., Yabuuchi, N., Gallant, B. M., Chen, S., Kim, B.-S., Hammond, P. T., & Shao-Horn, Y. (2010). High-power lithium batteries from functionalized carbon-nanotube electrodes. Nature Nanotechnology, 5(7), 531–537.

Authors 7
  1. Seung Woo Lee (first)
  2. Naoaki Yabuuchi (additional)
  3. Betar M. Gallant (additional)
  4. Shuo Chen (additional)
  5. Byeong-Su Kim (additional)
  6. Paula T. Hammond (additional)
  7. Yang Shao-Horn (additional)
References 47 Referenced 1,053
  1. Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nature Mater. 7, 845–854 (2008). (10.1038/nmat2297) / Nature Mater. by P Simon (2008)
  2. Miller, J. R. & Simon, P. Materials science—electrochemical capacitors for energy management. Science 321, 651–652 (2008). (10.1126/science.1158736) / Science by JR Miller (2008)
  3. Amatucci, G. G., Badway, F., Du Pasquier, A. & Zheng, T. An asymmetric hybrid nonaqueous energy storage cell. J. Electrochem. Soc. 148, A930–A939 (2001). (10.1149/1.1383553) / J. Electrochem. Soc. by GG Amatucci (2001)
  4. Kang, B. & Ceder, G. Battery materials for ultrafast charging and discharging. Nature 458, 190–193 (2009). (10.1038/nature07853) / Nature by B Kang (2009)
  5. Lee, Y. J. et al. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science 324, 1051–1055 (2009). (10.1126/science.1171541) / Science by YJ Lee (2009)
  6. Nazar, L. F. et al. Nanostructured materials for energy storage. Int. J. Inorg. Mater. 3, 191–200 (2001). (10.1016/S1466-6049(01)00026-5) / Int. J. Inorg. Mater. by LF Nazar (2001)
  7. Arico, A. S. et al. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005). (10.1038/nmat1368) / Nature Mater. by AS Arico (2005)
  8. Poizot, P. et al. Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000). (10.1038/35035045) / Nature by P Poizot (2000)
  9. Sides, C. R. et al. Nanoscale materials for lithium-ion batteries. MRS Bull. 27, 604–607 (2002). (10.1557/mrs2002.195) / MRS Bull. by CR Sides (2002)
  10. Bruce, P. G., Scrosati, B. & Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008). (10.1002/anie.200702505) / Angew. Chem. Int. Ed. by PG Bruce (2008)
  11. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). (10.1038/35104644) / Nature by JM Tarascon (2001)
  12. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008). (10.1038/451652a) / Nature by M Armand (2008)
  13. Wu, X. L. et al. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: superior cathode material for electrochemical energy-storage devices. Adv. Mater. 21, 2710–2714 (2009). (10.1002/adma.200802998) / Adv. Mater. by XL Wu (2009)
  14. Chmiola, J. et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006). (10.1126/science.1132195) / Science by J Chmiola (2006)
  15. Hu, C. C., Chen, W. C. & Chang, K. H. How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors. J. Electrochem. Soc. 151, A281–A290 (2004). (10.1149/1.1639020) / J. Electrochem. Soc. by CC Hu (2004)
  16. Fischer, A. E. et al. Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. Nano Lett. 7, 281–286 (2007). (10.1021/nl062263i) / Nano Lett. by AE Fischer (2007)
  17. Reddy, A. L. M., Shaijumon, M. M., Gowda, S. R. & Ajayan, P. M. Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett. 9, 1002–1006 (2009). (10.1021/nl803081j) / Nano Lett. by ALM Reddy (2009)
  18. Kim, D. K. et al. Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 8, 3948–3952 (2008). (10.1021/nl8024328) / Nano Lett. by DK Kim (2008)
  19. Bélanger, D., Brousse, T. & Long, J. W. Manganese oxides: battery materials make the leap to electrochemical capacitors. Electrochem. Soc. Interf. 17, 49–52 (2008). (10.1149/2.F07081IF) / Electrochem. Soc. Interf. by D Bélanger (2008)
  20. Decher, G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277, 1232–1237 (1997). (10.1126/science.277.5330.1232) / Science by G Decher (1997)
  21. Xiang, H. F. et al. Effect of capacity matchup in the LiNi0.5Mn1.5O4/Li4Ti5O12 cells. J. Power Sources 183, 355–360 (2008). (10.1016/j.jpowsour.2008.04.091) / J. Power Sources by HF Xiang (2008)
  22. Dudney, J. N. Thin film micro-batteries. Electrochem. Soc. Interf. 17, 44–48 (2008). (10.1149/2.F04083IF) / Electrochem. Soc. Interf. by JN Dudney (2008)
  23. Lee, Seung Woo et al. Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications. J. Am. Chem. Soc. 131, 671–679 (2009). (10.1021/ja807059k) / J. Am. Chem. Soc. by SeungWoo Lee (2009)
  24. Niu, C. M. et al. High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70, 1480–1482 (1997). (10.1063/1.118568) / Appl. Phys. Lett. by CM Niu (1997)
  25. Futaba, D. N. et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nature Mater. 5, 987–994 (2006). (10.1038/nmat1782) / Nature Mater. by DN Futaba (2006)
  26. Zielke, U., Huttinger, K. J. & Hoffman, W. P. Surface-oxidized carbon fibers: I. Surface structure and chemistry. Carbon 34, 983–998 (1996). (10.1016/0008-6223(96)00032-2) / Carbon by U Zielke (1996)
  27. Kozlowski, C. & Sherwood, P. M. A. X-ray photoelectron-spectroscopic studies of carbon-fibre surfaces. Part 5. The effect of pH on surface oxidation. J. Chem. Soc. Farad. Trans. I 81, 2745–2756 (1985). (10.1039/f19858102745) / J. Chem. Soc. Farad. Trans. I by C Kozlowski (1985)
  28. Frackowiak, E. et al. Electrochemical storage of lithium multiwalled carbon nanotubes. Carbon 37, 61–69 (1999). (10.1016/S0008-6223(98)00187-0) / Carbon by E Frackowiak (1999)
  29. Zhu, X. Y., Lee, S. M., Lee, Y. H. & Frauenheim, T. Adsorption and desorption of an O2 molecule on carbon nanotubes. Phys. Rev. Lett. 85, 2757–2760 (2000). (10.1103/PhysRevLett.85.2757) / Phys. Rev. Lett. by XY Zhu (2000)
  30. Burg, P. et al. The characterization of nitrogen-enriched activated carbons by IR, XPS and LSER methods. Carbon 40, 1521–1531 (2002). (10.1016/S0008-6223(02)00004-0) / Carbon by P Burg (2002)
  31. Lota, G. et al. Effect of nitrogen in carbon electrodes on the supercapacitor performance. Chem. Phys. Lett. 404, 53–58 (2005). (10.1016/j.cplett.2005.01.074) / Chem. Phys. Lett. by G Lota (2005)
  32. Simon, P. & Burke, A. Nanostructured carbons: double-layer capacitance and more. Electrochem. Soc. Interf. 17, 38–43 (2008). (10.1149/2.F05081IF) / Electrochem. Soc. Interf. by P Simon (2008)
  33. Chmiola, J., Yushin, G., Dash, R. & Gogotsi, Y. Effect of pore size and surface area of carbide derived carbons on specific capacitance. J. Power Sources 158, 765–772 (2006). (10.1016/j.jpowsour.2005.09.008) / J. Power Sources by J Chmiola (2006)
  34. Le Gall, T., Reiman, K. H., Grossel, M. C. & Owen, J. R. Poly(2,5-dihydroxy-1,4-benzoquinone-3,6-methylene): a new organic polymer as positive electrode material for rechargeable lithium batteries. J. Power Sources 119, 316–320 (2003). (10.1016/S0378-7753(03)00167-8) / J. Power Sources by T Le Gall (2003)
  35. Chen, H. et al. From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. ChemSusChem 1, 348–355 (2008). (10.1002/cssc.200700161) / ChemSusChem by H Chen (2008)
  36. Ramanathan, T., Fisher, F. T., Ruoff, R. S. & Brinson, L. C. Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem. Mater. 17, 1290–1295 (2005). (10.1021/cm048357f) / Chem. Mater. by T Ramanathan (2005)
  37. Ago, H. et al. Work functions and surface functional groups of multiwall carbon nanotubes. J. Phys. Chem. B 103, 8116–8121 (1999). (10.1021/jp991659y) / J. Phys. Chem. B by H Ago (1999)
  38. Naoi, K. & Simon, P. New materials and new configurations for advanced electrochemical capacitors. Electrochem. Soc. Interf. 17, 34–37 (2008). (10.1149/2.F04081IF) / Electrochem. Soc. Interf. by K Naoi (2008)
  39. Ma, S. B. et al. Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications. J. Power Sources 178, 483–489 (2008). (10.1016/j.jpowsour.2007.12.027) / J. Power Sources by SB Ma (2008)
  40. Fischer, A. E. et al. Electroless deposition of nanoscale MnO2 on ultraporous carbon nanoarchitectures: correlation of evolving pore–solid structure and electrochemical performance. J. Electrochem. Soc. 155, A246–A252 (2008). (10.1149/1.2830548) / J. Electrochem. Soc. by AE Fischer (2008)
  41. Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004). (10.1021/cr020731c) / Chem. Rev. by MS Whittingham (2004)
  42. Kang, K. S. et al. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977–980 (2006). (10.1126/science.1122152) / Science by KS Kang (2006)
  43. Chen, H. Y. et al. Lithium salt of tetrahydroxybenzoquinone: toward the development of a sustainable Li-ion battery. J. Am. Chem. Soc. 131, 8984–8988 (2009). (10.1021/ja9024897) / J. Am. Chem. Soc. by HY Chen (2009)
  44. Frackowiak, E. & Beguin, F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39, 937–950 (2001). (10.1016/S0008-6223(00)00183-4) / Carbon by E Frackowiak (2001)
  45. Krogman, K. C., Zacharia, N. S., Schroeder, S. & Hammond, P. T. Automated process for improved uniformity and versatility of layer-by-layer deposition. Langmuir 23, 3137–3141 (2007). (10.1021/la063085b) / Langmuir by KC Krogman (2007)
  46. Han, X. Y. et al. Aromatic carbonyl derivative polymers as high-performance Li-ion storage materials. Adv. Mater. 19, 1616–1621 (2007). (10.1002/adma.200602584) / Adv. Mater. by XY Han (2007)
  47. Xiang, J. F. et al. A novel coordination polymer as positive electrode material for lithium ion battery. Cryst. Growth Des. 8, 280–282 (2008). (10.1021/cg070386q) / Cryst. Growth Des. by JF Xiang (2008)
Dates
Type When
Created 15 years, 2 months ago (June 20, 2010, 9:10 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 8:18 p.m.)
Indexed 3 weeks, 6 days ago (July 26, 2025, 5:07 a.m.)
Issued 15 years, 2 months ago (June 20, 2010)
Published 15 years, 2 months ago (June 20, 2010)
Published Online 15 years, 2 months ago (June 20, 2010)
Published Print 15 years, 1 month ago (July 1, 2010)
Funders 0

None

@article{Lee_2010, title={High-power lithium batteries from functionalized carbon-nanotube electrodes}, volume={5}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2010.116}, DOI={10.1038/nnano.2010.116}, number={7}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Lee, Seung Woo and Yabuuchi, Naoaki and Gallant, Betar M. and Chen, Shuo and Kim, Byeong-Su and Hammond, Paula T. and Shao-Horn, Yang}, year={2010}, month=jun, pages={531–537} }