Crossref journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Bibliography

Tung, V. C., Allen, M. J., Yang, Y., & Kaner, R. B. (2008). High-throughput solution processing of large-scale graphene. Nature Nanotechnology, 4(1), 25–29.

Authors 4
  1. Vincent C. Tung (first)
  2. Matthew J. Allen (additional)
  3. Yang Yang (additional)
  4. Richard B. Kaner (additional)
References 30 Referenced 1,911
  1. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Available at http://arxiv.org/abs/0709.1163 (2007).
  2. Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007). (10.1126/science.1136836) / Science by JS Bunch (2007)
  3. Staley, N. et al. Lithography-free fabrication of graphene devices. Appl. Phys. Lett. 90, 143518 (2007). (10.1063/1.2719607) / Appl. Phys. Lett. by N Staley (2007)
  4. Viculis, L. M., Mack, J. J. & Kaner, R. B. A chemical route to carbon nanoscrolls. Science 299, 1361 (2003). (10.1126/science.1078842) / Science by LM Viculis (2003)
  5. Shioyama, H. & Akita, T. A new route to carbon nanotubes. Carbon 41, 179–181 (2003). (10.1016/S0008-6223(02)00278-6) / Carbon by H Shioyama (2003)
  6. Gilje, S., Han, S., Wang, M. S., Wang, K. L. & Kaner, R. B. A chemical route to graphene for device applications. Nano Lett. 7, 3394–3398 (2007). (10.1021/nl0717715) / Nano Lett. by S Gilje (2007)
  7. Berger, C. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004). (10.1021/jp040650f) / J. Phys. Chem. B by C Berger (2004)
  8. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006). (10.1126/science.1125925) / Science by C Berger (2006)
  9. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005). (10.1073/pnas.0502848102) / Proc. Natl Acad. Sci. USA by KS Novoselov (2005)
  10. Castro, A., Guinea, F. & Peres, N. M. Drawing conclusions from grapheme. Phys. World, 33–37 (November 2006). (10.1088/2058-7058/19/11/34)
  11. Ohta, T., Bostwick, A., Seyller, T., Horn, K. & Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006). (10.1126/science.1130681) / Science by T Ohta (2006)
  12. Stankovich, S., Piner, R. D., Nguyen, S. T. & Ruoff, R. S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44, 3342–3347 (2006). (10.1016/j.carbon.2006.06.004) / Carbon by S Stankovich (2006)
  13. Stankovich, S. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007). (10.1016/j.carbon.2007.02.034) / Carbon by S Stankovich (2007)
  14. Gomez-Navarro, C. et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 7, 3499–3503 (2007). (10.1021/nl072090c) / Nano Lett. by C Gomez-Navarro (2007)
  15. Hummers, W. S. Jr & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958). (10.1021/ja01539a017) / J. Am. Chem. Soc. by WS Hummers Jr (1958)
  16. Li, D., Mueller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. Processable aqueous dispersion of graphene nanosheets. Nature Nanotech. 3, 101–105 (2008). (10.1038/nnano.2007.451) / Nature Nanotech. by D Li (2008)
  17. Stankovich, S. et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem. 16, 155–158 (2006). (10.1039/B512799H) / J. Mater. Chem. by S Stankovich (2006)
  18. Liu, P. & Gong, K. Synthesis of polyaniline-intercalated graphite oxide by an in situ oxidative polymerization reaction. Carbon 37, 706–707 (1999). (10.1016/S0008-6223(99)00037-8) / Carbon by P Liu (1999)
  19. Bourlinos, A. B. et al. Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19, 6050–6055 (2003). (10.1021/la026525h) / Langmuir by AB Bourlinos (2003)
  20. Mitzi, B. D., Copel, M. & Chey, S. J. Low-voltage transistor employing a high-mobility spin-coated chalcogenide semiconductor. Adv Mater. 17, 1289–1293 (2005). (10.1002/adma.200401443) / Adv Mater. by BD Mitzi (2005)
  21. Wang, X., Zhi, L. & Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2008). (10.1021/nl072838r) / Nano Lett. by X Wang (2008)
  22. Schniepp, C. H. et al. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110, 8535–8539 (2006). (10.1021/jp060936f) / J. Phys. Chem. B by CH Schniepp (2006)
  23. Ishigami, M., Chen, J. H., Cullen, W. G., Fuhrer, M. S. & Williams, E. D. Atomic structure of graphene on SiO2 . Nano Lett. 7, 1643–1648 (2007). (10.1021/nl070613a) / Nano Lett. by M Ishigami (2007)
  24. Moser, J., Barreiro, A. & Bachtold, A. Current-induced cleaning of graphene. Appl. Phys. Lett. 91, 163513 (2007). (10.1063/1.2789673) / Appl. Phys. Lett. by J Moser (2007)
  25. Eda, G., Fanchini, G. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotech. 3, 270–274 (2008). (10.1038/nnano.2008.83) / Nature Nanotech. by G Eda (2008)
  26. Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008). (10.1126/science.1150878) / Science by X Li (2008)
  27. Li, X . et al. Highly conducting graphene sheets and Langmuir–Blodgett films. Nature Nanotech. 3, 538–542 (2008). (10.1038/nnano.2008.210) / Nature Nanotech. by X Li (2008)
  28. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006). (10.1103/PhysRevLett.97.187401) / Phys. Rev. Lett. by AC Ferrari (2006)
  29. Graf, D. et al. Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 7, 238–242 (2007). (10.1021/nl061702a) / Nano Lett. by D Graf (2007)
  30. Calizo, I., Balandin, A., Bao, W., Miao, F. & Lau, C. N. Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 7, 2645–2649 (2007). (10.1021/nl071033g) / Nano Lett. by I Calizo (2007)
Dates
Type When
Created 16 years, 9 months ago (Nov. 9, 2008, 1:13 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 8:13 p.m.)
Indexed 25 minutes ago (Sept. 3, 2025, 4:56 p.m.)
Issued 16 years, 9 months ago (Nov. 9, 2008)
Published 16 years, 9 months ago (Nov. 9, 2008)
Published Online 16 years, 9 months ago (Nov. 9, 2008)
Published Print 16 years, 8 months ago (Jan. 1, 2009)
Funders 0

None

@article{Tung_2008, title={High-throughput solution processing of large-scale graphene}, volume={4}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2008.329}, DOI={10.1038/nnano.2008.329}, number={1}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Tung, Vincent C. and Allen, Matthew J. and Yang, Yang and Kaner, Richard B.}, year={2008}, month=nov, pages={25–29} }