Crossref journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Bibliography

Meric, I., Han, M. Y., Young, A. F., Ozyilmaz, B., Kim, P., & Shepard, K. L. (2008). Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nature Nanotechnology, 3(11), 654–659.

Authors 6
  1. Inanc Meric (first)
  2. Melinda Y. Han (additional)
  3. Andrea F. Young (additional)
  4. Barbaros Ozyilmaz (additional)
  5. Philip Kim (additional)
  6. Kenneth L. Shepard (additional)
References 32 Referenced 1,451
  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). (10.1126/science.1102896) / Science by KS Novoselov (2004)
  2. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005). (10.1038/nature04233) / Nature by KS Novoselov (2005)
  3. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005). (10.1038/nature04235) / Nature by Y Zhang (2005)
  4. Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nature Mater. 6, 652–655 (2007). (10.1038/nmat1967) / Nature Mater. by F Schedin (2007)
  5. Fratini, S. & Guinea, F. Substrate-limited electron dynamics in graphene. Phys. Rev. B 77, 195415 (2008). (10.1103/PhysRevB.77.195415) / Phys. Rev. B by S Fratini (2008)
  6. Chen, J.-H. et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2 . Nature Nanotech. 3, 206–209 (2008). (10.1038/nnano.2008.58) / Nature Nanotech. by J-H Chen (2008)
  7. Javey, A. et al. High-κ dielectrics for advanced carbon-nanotube transistors and logic gates. Nature Mater. 1, 241–246 (2002). (10.1038/nmat769) / Nature Mater. by A Javey (2002)
  8. Javey, A. et al. Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays. Nano Lett. 4, 1319–1322 (2004). (10.1021/nl049222b) / Nano Lett. by A Javey (2004)
  9. Klinke, C., Chen, J., Afzali, A. & Avouris, P. Charge transfer induced polarity switching in carbon nanotube transistors. Nano Lett. 5, 555–558 (2005). (10.1021/nl048055c) / Nano Lett. by C Klinke (2005)
  10. Kang, S. J. et al. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotech. 2, 230–236 (2007). (10.1038/nnano.2007.77) / Nature Nanotech. by SJ Kang (2007)
  11. Avouris, P., Chen, Z. & Perebeinos, V. Carbon-based electronics. Nature Nanotech. 2, 605–615 (2007). (10.1038/nnano.2007.300) / Nature Nanotech. by P Avouris (2007)
  12. Akinwande, D., Close, G. F. & Wong, H. S. P. Analysis of the frequency response of carbon nanotube transistors. IEEE Trans. Nanotech. 5, 599–605 (2006). (10.1109/TNANO.2006.880451) / IEEE Trans. Nanotech. by D Akinwande (2006)
  13. Han, M. Y., Ozyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007). (10.1103/PhysRevLett.98.206805) / Phys. Rev. Lett. by MY Han (2007)
  14. Chen, Z., Lin, Y. M., Rooks, M. J. & Avouris, P. Graphene nano-ribbon electronics. Phys. E 40, 228–232 (2007). (10.1016/j.physe.2007.06.020) / Phys. E by Z Chen (2007)
  15. Li, X. et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008). (10.1126/science.1150878) / Science by X Li (2008)
  16. Ohta, T. et al. Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006). (10.1126/science.1130681) / Science by T Ohta (2006)
  17. Oostinga, J. B. et al. Gate-induced insulating state in bilayer graphene devices. Nature Mater. 7, 151–157 (2008). (10.1038/nmat2082) / Nature Mater. by JB Oostinga (2008)
  18. Adam, S., Hwang, E. H., Galitski, V. M. & Das Sarma, S. A self-consistent theory for graphene transport. Proc. Natl Acad. Sci. USA 104, 18392–18397 (2007). (10.1073/pnas.0704772104) / Proc. Natl Acad. Sci. USA by S Adam (2007)
  19. Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nature Phys. 4, 144–148 (2008). (10.1038/nphys781) / Nature Phys. by J Martin (2008)
  20. Lemme, M. C., Echtermeyer, T. J., Baus, M. & Kurz, H. A. K. H. A graphene field-effect device. IEEE Electron. Device Lett. 28, 282–284 (2007). (10.1109/LED.2007.891668) / IEEE Electron. Device Lett. by MC Lemme (2007)
  21. Huard, B. et al. Transport measurements across a tuneable potential barrier in graphene. Phys. Rev. Lett. 98, 236803 (2007). (10.1103/PhysRevLett.98.236803) / Phys. Rev. Lett. by B Huard (2007)
  22. Williams, J. R., Dicarlo, L. & Marcus, C. M. Quantum Hall effect in a gate-controlled p-n junction of graphene. Science 317, 638–641 (2007). (10.1126/science.1144657) / Science by JR Williams (2007)
  23. Ozyilmaz, B. et al. Electronic transport and quantum Hall effect in bipolar graphene p-n-p junctions. Phys. Rev. Lett. 99, 166804 (2007). (10.1103/PhysRevLett.99.166804) / Phys. Rev. Lett. by B Ozyilmaz (2007)
  24. Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotech. 3, 210–215 (2008). (10.1038/nnano.2008.67) / Nature Nanotech. by A Das (2008)
  25. Chen, Y.-F. & Fuhrer, M. S. Electric-field-dependent charge-carrier velocity in semiconducting carbon nanotubes. Phys. Rev. Lett. 95, 236803 (2005). (10.1103/PhysRevLett.95.236803) / Phys. Rev. Lett. by Y-F Chen (2005)
  26. Richman, P. MOSFETs and integrated circuits (Wiley, New York, 1973). / MOSFETs and integrated circuits by P Richman (1973)
  27. Yao, Z., Kane, C. L. & Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 2941–2944 (2000). (10.1103/PhysRevLett.84.2941) / Phys. Rev. Lett. by Z Yao (2000)
  28. Park, J. Y. et al. Electron–phonon scattering in metallic single-walled carbon nanotubes. Nano Lett. 4, 517–520 (2004). (10.1021/nl035258c) / Nano Lett. by JY Park (2004)
  29. Brews, J. A charge-sheet model of the MOSFET. Solid State Electron. 21, 345–355 (1978). (10.1016/0038-1101(78)90264-2) / Solid State Electron. by J Brews (1978)
  30. Canali, C., Majni, G., Minder, R. & Ottaviani, G. Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature. IEEE Trans. Electron. Dev. 22, 1045–1047 (1975). (10.1109/T-ED.1975.18267) / IEEE Trans. Electron. Dev. by C Canali (1975)
  31. Fischetti, M. V., Neumayer, D. A. & Cartier, E. A. Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high-kappa insulator: The role of remote phonon scattering. J. Appl. Phys. 90, 4587–4608 (2001). (10.1063/1.1405826) / J. Appl. Phys. by MV Fischetti (2001)
  32. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006). (10.1103/PhysRevLett.97.187401) / Phys. Rev. Lett. by AC Ferrari (2006)
Dates
Type When
Created 16 years, 11 months ago (Sept. 21, 2008, 2:04 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 8:12 p.m.)
Indexed 4 hours, 14 minutes ago (Aug. 23, 2025, 1:04 a.m.)
Issued 16 years, 11 months ago (Sept. 21, 2008)
Published 16 years, 11 months ago (Sept. 21, 2008)
Published Online 16 years, 11 months ago (Sept. 21, 2008)
Published Print 16 years, 9 months ago (Nov. 1, 2008)
Funders 0

None

@article{Meric_2008, title={Current saturation in zero-bandgap, top-gated graphene field-effect transistors}, volume={3}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2008.268}, DOI={10.1038/nnano.2008.268}, number={11}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Meric, Inanc and Han, Melinda Y. and Young, Andrea F. and Ozyilmaz, Barbaros and Kim, Philip and Shepard, Kenneth L.}, year={2008}, month=sep, pages={654–659} }