Crossref
journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
References
32
Referenced
1,451
-
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
(
10.1126/science.1102896
) / Science by KS Novoselov (2004) -
Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
(
10.1038/nature04233
) / Nature by KS Novoselov (2005) -
Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).
(
10.1038/nature04235
) / Nature by Y Zhang (2005) -
Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nature Mater. 6, 652–655 (2007).
(
10.1038/nmat1967
) / Nature Mater. by F Schedin (2007) -
Fratini, S. & Guinea, F. Substrate-limited electron dynamics in graphene. Phys. Rev. B 77, 195415 (2008).
(
10.1103/PhysRevB.77.195415
) / Phys. Rev. B by S Fratini (2008) -
Chen, J.-H. et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2 . Nature Nanotech. 3, 206–209 (2008).
(
10.1038/nnano.2008.58
) / Nature Nanotech. by J-H Chen (2008) -
Javey, A. et al. High-κ dielectrics for advanced carbon-nanotube transistors and logic gates. Nature Mater. 1, 241–246 (2002).
(
10.1038/nmat769
) / Nature Mater. by A Javey (2002) -
Javey, A. et al. Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays. Nano Lett. 4, 1319–1322 (2004).
(
10.1021/nl049222b
) / Nano Lett. by A Javey (2004) -
Klinke, C., Chen, J., Afzali, A. & Avouris, P. Charge transfer induced polarity switching in carbon nanotube transistors. Nano Lett. 5, 555–558 (2005).
(
10.1021/nl048055c
) / Nano Lett. by C Klinke (2005) -
Kang, S. J. et al. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotech. 2, 230–236 (2007).
(
10.1038/nnano.2007.77
) / Nature Nanotech. by SJ Kang (2007) -
Avouris, P., Chen, Z. & Perebeinos, V. Carbon-based electronics. Nature Nanotech. 2, 605–615 (2007).
(
10.1038/nnano.2007.300
) / Nature Nanotech. by P Avouris (2007) -
Akinwande, D., Close, G. F. & Wong, H. S. P. Analysis of the frequency response of carbon nanotube transistors. IEEE Trans. Nanotech. 5, 599–605 (2006).
(
10.1109/TNANO.2006.880451
) / IEEE Trans. Nanotech. by D Akinwande (2006) -
Han, M. Y., Ozyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).
(
10.1103/PhysRevLett.98.206805
) / Phys. Rev. Lett. by MY Han (2007) -
Chen, Z., Lin, Y. M., Rooks, M. J. & Avouris, P. Graphene nano-ribbon electronics. Phys. E 40, 228–232 (2007).
(
10.1016/j.physe.2007.06.020
) / Phys. E by Z Chen (2007) -
Li, X. et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).
(
10.1126/science.1150878
) / Science by X Li (2008) -
Ohta, T. et al. Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006).
(
10.1126/science.1130681
) / Science by T Ohta (2006) -
Oostinga, J. B. et al. Gate-induced insulating state in bilayer graphene devices. Nature Mater. 7, 151–157 (2008).
(
10.1038/nmat2082
) / Nature Mater. by JB Oostinga (2008) -
Adam, S., Hwang, E. H., Galitski, V. M. & Das Sarma, S. A self-consistent theory for graphene transport. Proc. Natl Acad. Sci. USA 104, 18392–18397 (2007).
(
10.1073/pnas.0704772104
) / Proc. Natl Acad. Sci. USA by S Adam (2007) -
Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nature Phys. 4, 144–148 (2008).
(
10.1038/nphys781
) / Nature Phys. by J Martin (2008) -
Lemme, M. C., Echtermeyer, T. J., Baus, M. & Kurz, H. A. K. H. A graphene field-effect device. IEEE Electron. Device Lett. 28, 282–284 (2007).
(
10.1109/LED.2007.891668
) / IEEE Electron. Device Lett. by MC Lemme (2007) -
Huard, B. et al. Transport measurements across a tuneable potential barrier in graphene. Phys. Rev. Lett. 98, 236803 (2007).
(
10.1103/PhysRevLett.98.236803
) / Phys. Rev. Lett. by B Huard (2007) -
Williams, J. R., Dicarlo, L. & Marcus, C. M. Quantum Hall effect in a gate-controlled p-n junction of graphene. Science 317, 638–641 (2007).
(
10.1126/science.1144657
) / Science by JR Williams (2007) -
Ozyilmaz, B. et al. Electronic transport and quantum Hall effect in bipolar graphene p-n-p junctions. Phys. Rev. Lett. 99, 166804 (2007).
(
10.1103/PhysRevLett.99.166804
) / Phys. Rev. Lett. by B Ozyilmaz (2007) -
Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotech. 3, 210–215 (2008).
(
10.1038/nnano.2008.67
) / Nature Nanotech. by A Das (2008) -
Chen, Y.-F. & Fuhrer, M. S. Electric-field-dependent charge-carrier velocity in semiconducting carbon nanotubes. Phys. Rev. Lett. 95, 236803 (2005).
(
10.1103/PhysRevLett.95.236803
) / Phys. Rev. Lett. by Y-F Chen (2005) - Richman, P. MOSFETs and integrated circuits (Wiley, New York, 1973). / MOSFETs and integrated circuits by P Richman (1973)
-
Yao, Z., Kane, C. L. & Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 2941–2944 (2000).
(
10.1103/PhysRevLett.84.2941
) / Phys. Rev. Lett. by Z Yao (2000) -
Park, J. Y. et al. Electron–phonon scattering in metallic single-walled carbon nanotubes. Nano Lett. 4, 517–520 (2004).
(
10.1021/nl035258c
) / Nano Lett. by JY Park (2004) -
Brews, J. A charge-sheet model of the MOSFET. Solid State Electron. 21, 345–355 (1978).
(
10.1016/0038-1101(78)90264-2
) / Solid State Electron. by J Brews (1978) -
Canali, C., Majni, G., Minder, R. & Ottaviani, G. Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature. IEEE Trans. Electron. Dev. 22, 1045–1047 (1975).
(
10.1109/T-ED.1975.18267
) / IEEE Trans. Electron. Dev. by C Canali (1975) -
Fischetti, M. V., Neumayer, D. A. & Cartier, E. A. Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high-kappa insulator: The role of remote phonon scattering. J. Appl. Phys. 90, 4587–4608 (2001).
(
10.1063/1.1405826
) / J. Appl. Phys. by MV Fischetti (2001) -
Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).
(
10.1103/PhysRevLett.97.187401
) / Phys. Rev. Lett. by AC Ferrari (2006)
Dates
Type | When |
---|---|
Created | 16 years, 11 months ago (Sept. 21, 2008, 2:04 p.m.) |
Deposited | 2 years, 3 months ago (May 18, 2023, 8:12 p.m.) |
Indexed | 4 hours, 14 minutes ago (Aug. 23, 2025, 1:04 a.m.) |
Issued | 16 years, 11 months ago (Sept. 21, 2008) |
Published | 16 years, 11 months ago (Sept. 21, 2008) |
Published Online | 16 years, 11 months ago (Sept. 21, 2008) |
Published Print | 16 years, 9 months ago (Nov. 1, 2008) |
@article{Meric_2008, title={Current saturation in zero-bandgap, top-gated graphene field-effect transistors}, volume={3}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2008.268}, DOI={10.1038/nnano.2008.268}, number={11}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Meric, Inanc and Han, Melinda Y. and Young, Andrea F. and Ozyilmaz, Barbaros and Kim, Philip and Shepard, Kenneth L.}, year={2008}, month=sep, pages={654–659} }