Crossref journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Bibliography

Lee, W., Han, H., Lotnyk, A., Schubert, M. A., Senz, S., Alexe, M., Hesse, D., Baik, S., & Gösele, U. (2008). Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb inch−2 density. Nature Nanotechnology, 3(7), 402–407.

Authors 9
  1. Woo Lee (first)
  2. Hee Han (additional)
  3. Andriy Lotnyk (additional)
  4. Markus Andreas Schubert (additional)
  5. Stephan Senz (additional)
  6. Marin Alexe (additional)
  7. Dietrich Hesse (additional)
  8. Sunggi Baik (additional)
  9. Ulrich Gösele (additional)
References 31 Referenced 271
  1. Auciello, O., Scott, J. F. & Ramesh, R. The physics of ferroelectric memories. Phys. Today 51, 22–27 (July 1998). (10.1063/1.882324) / Phys. Today by O Auciello (1998)
  2. Cheong, S.-W. & Mostovoy, M. Multiferroics: a magnetic twist for ferroelectricity. Nature Mater. 6, 13–20 (2007). (10.1038/nmat1804) / Nature Mater. by S-W Cheong (2007)
  3. Cho, Y. Nanoscale ferroelectric information storage based on scanning nonlinear dielectric microscopy. J. Nanosci. Nanotechnol. 7, 105–116 (2007). (10.1166/jnn.2007.18009) / J. Nanosci. Nanotechnol. by Y Cho (2007)
  4. Cross, L. E. Ferroelectric Ceramics (ed. Setter, N. ) 1–85 (Birkhäuser, Basel, 1993). (10.1007/978-3-0348-7551-6_1) / Ferroelectric Ceramics by LE Cross (1993)
  5. Evans, P. R. et al. Toward self-assembled ferroelectric random access memories: Hard-wired switching capacitor arrays with almost Tb/in.2 densities. Nano Lett. 7, 1134–1137 (2007). (10.1021/nl0626028) / Nano Lett. by PR Evans (2007)
  6. Alexe, M., Harnagea, C., Hesse, D. & Gösele, U. Polarization imprint and size effects in mesoscopic ferroelectric structures. Appl. Phys. Lett. 70, 242–244 (2001). (10.1063/1.1385184) / Appl. Phys. Lett. by M Alexe (2001)
  7. Bühlmann, S., Dwir, B., Baborowski, J. & Muralt, P. Size effect in mesoscopic epitaxial ferroelectric structures: Increase of piezoelectric response with decreasing feature size. Appl. Phys. Lett. 80, 3195–3197 (2002). (10.1063/1.1475369) / Appl. Phys. Lett. by S Bühlmann (2002)
  8. Ganpule, C. S. et al. Scaling of ferroelectric and piezoelectric properties in Pt/SrBi2Ta2O9/Pt thin films. Appl. Phys. Lett. 75, 3874–3876 (1999). (10.1063/1.125485) / Appl. Phys. Lett. by CS Ganpule (1999)
  9. Stanishevsky, A. et al. Radiation damage and its recovery in focused ion beam fabricated ferroelectric capacitors. J. Appl. Phys. 92, 3275–3278 (2002). (10.1063/1.1489069) / J. Appl. Phys. by A Stanishevsky (2002)
  10. Ahn, C. H. et al. Local, nonvolatile electronic writing of epitaxial Pb(Zr0.52Ti0.48)O3/SrRuO3 heterostructures. Science 276, 1100–1103 (1997). (10.1126/science.276.5315.1100) / Science by CH Ahn (1997)
  11. Gruverman, A., Auciello, O. & Tokumoto, H. Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy. Annu. Rev. Mater. Sci. 28, 101–123 (1998). (10.1146/annurev.matsci.28.1.101) / Annu. Rev. Mater. Sci. by A Gruverman (1998)
  12. Cho, Y., Hashimoto, S., Odagawa, N., Tanaka, K. & Hiranaga, Y. Nanodomain manipulation for ultrahigh density ferroelectric data storage. Nanotechnology 17, S137–S141 (2006). (10.1088/0957-4484/17/7/S06) / Nanotechnology by Y Cho (2006)
  13. Kalinin, S. V. et al. Intrinsic single-domain switching in ferroelectric materials on a nearly ideal surface. Proc. Natl Acad. Sci. USA 104, 20204–20209 (2007). (10.1073/pnas.0709316104) / Proc. Natl Acad. Sci. USA by SV Kalinin (2007)
  14. Odagawa, N. & Cho, Y. Wall behavior of nanodomains as a function of their initial state. Appl. Phys. Lett. 89, 192906 (2006). (10.1063/1.2385860) / Appl. Phys. Lett. by N Odagawa (2006)
  15. Torii, K. et al. Fabrication and properties of one-mask-patterned ferroelectric integrated capacitors. Electr. Eng. Jpn. 121, 43–50 (1997). (10.1002/(SICI)1520-6416(199710)121:1<43::AID-EEJ6>3.0.CO;2-#) / Electr. Eng. Jpn by K Torii (1997)
  16. Lee, S.-K. et al. Well-ordered large-area arrays of epitaxial ferroelectric (Bi,La)4Ti3O12 nanostructures fabricated by gold nanotube-membrane lithography. Appl. Phys. Lett. 86, 152906 (2005). (10.1063/1.1899239) / Appl. Phys. Lett. by S-K Lee (2005)
  17. Lee, W., Alexe, M., Nielsch, K. & Gösele, U. Metal membranes with hierarchically organized nanotube arrays. Chem. Mater. 17, 3325–3327 (2005). (10.1021/cm050480z) / Chem. Mater. by W Lee (2005)
  18. Chu, M.-W., Szafraniak, I., Hesse, D., Alexe, M. & Gösele, U. Elastic coupling between 90 ° twin walls and interfacial dislocations in epitaxial ferroelectric perovskites: A quantitative high-resolution transmission electron microscopy study. Phys. Rev. B 72, 174112 (2005). (10.1103/PhysRevB.72.174112) / Phys. Rev. B by M-W Chu (2005)
  19. Lee, K., Yi, H., Park, W.-H., Kim, Y. K. & Baik, S. Lateral size effects on domain structure in epitaxial PbTiO3 thin films. J. Appl. Phys. 100, 051615 (2006). (10.1063/1.2337358) / J. Appl. Phys. by K Lee (2006)
  20. Jesse, S. et al. Direct imaging of the spatial and energy distribution of nucleation centers in ferroelectric materials. Nature Mater. 7, 209–215 (2008). (10.1038/nmat2114) / Nature Mater. by S Jesse (2008)
  21. Lee, K., Kim, K., Kwon, S.-J. & Baik, S. Two-dimensional planar size effects in epitaxial PbTiO3 thin films. Appl. Phys. Lett. 85, 4711–4713 (2004). (10.1063/1.1823033) / Appl. Phys. Lett. by K Lee (2004)
  22. Nagarajan, V. et al. Dynamics of ferroelastic domains in ferroelectric thin films. Nature Mater. 2, 43–47 (2002). (10.1038/nmat800) / Nature Mater. by V Nagarajan (2002)
  23. Speck, J. S. & Pompe, W. Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. I. Theory. J. Appl. Phys. 76, 466–476 (1994). (10.1063/1.357097) / J. Appl. Phys. by JS Speck (1994)
  24. Masuda, H. & Fukuda, K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995). (10.1126/science.268.5216.1466) / Science by H Masuda (1995)
  25. Li, A. P., Müller, F., Birner, A., Nielsch, K. & Gösele, U. Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 84, 6023–6026 (1998). (10.1063/1.368911) / J. Appl. Phys. by AP Li (1998)
  26. Lee, W., Ji, R., Ross, C. A., Gösele, U. & Nielsch, K. Wafer-scale Ni imprint stamps for porous alumina membranes based on interference lithography. Small 2, 978–982 (2006). (10.1002/smll.200600100) / Small by W Lee (2006)
  27. Choi, J., Nielsch, K., Reiche, R., Wehrspohn, R. B. & Gösele, U. Fabrication of monodomain alumina pore arrays with an interpore distance smaller than the lattice constant of the imprint stamp. J. Vac. Sci. Technol. B 21, 763–766 (2003). (10.1116/1.1556397) / J. Vac. Sci. Technol. B by J Choi (2003)
  28. Sun, Z. & Kim, H. K. Growth of ordered, single-domain, alumina nanopore arrays with holographically patterned aluminum films. Appl. Phys. Lett. 81, 3458–3460 (2002). (10.1063/1.1517719) / Appl. Phys. Lett. by Z Sun (2002)
  29. Masuda, H., Yamada, H., Satoh, M. & Asoh, H. Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 71, 2770–2772 (1997). (10.1063/1.120128) / Appl. Phys. Lett. by H Masuda (1997)
  30. Lee, W., Ji, R., Gösele, U. & Nielsch, K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nature Mater. 5, 741–747 (2006). (10.1038/nmat1717) / Nature Mater. by W Lee (2006)
  31. Harnagea, C., Pignolet, A., Alexe, M. & Hesse, D. Piezoresponse scanning force microscopy: What quantitative information can we really get out of piezoresponse measurements on ferroelectric thin films. Intergr. Ferroelectr. 44, 113–124 (2002). (10.1080/713718197) / Intergr. Ferroelectr. by C Harnagea (2002)
Dates
Type When
Created 17 years, 2 months ago (June 15, 2008, 6:07 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 8:11 p.m.)
Indexed 1 month, 1 week ago (July 27, 2025, 3:30 a.m.)
Issued 17 years, 2 months ago (June 15, 2008)
Published 17 years, 2 months ago (June 15, 2008)
Published Online 17 years, 2 months ago (June 15, 2008)
Published Print 17 years, 2 months ago (July 1, 2008)
Funders 0

None

@article{Lee_2008, title={Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb inch−2 density}, volume={3}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2008.161}, DOI={10.1038/nnano.2008.161}, number={7}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Lee, Woo and Han, Hee and Lotnyk, Andriy and Schubert, Markus Andreas and Senz, Stephan and Alexe, Marin and Hesse, Dietrich and Baik, Sunggi and Gösele, Ulrich}, year={2008}, month=jun, pages={402–407} }