Crossref journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Bibliography

Lee, S.-H., Jung, Y., & Agarwal, R. (2007). Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. Nature Nanotechnology, 2(10), 626–630.

Authors 3
  1. Se-Ho Lee (first)
  2. Yeonwoong Jung (additional)
  3. Ritesh Agarwal (additional)
References 30 Referenced 393
  1. Ovshinsky, S. R. Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450–1453 (1968). (10.1103/PhysRevLett.21.1450) / Phys. Rev. Lett. by SR Ovshinsky (1968)
  2. Lai, S. & Lowrey, T. OUM-a 180 nm nonvolatile memory cell element technology for stand alone and embedded applications. IEDM Tech. Dig. 803–806 (2001).
  3. Pirovano, A. et al. Scaling analysis of phase-change memory technology. IEDM Tech. Dig. 699–702 (2003).
  4. Hudgens, S. & Johnson, B. Overview of phase-change chalcogenide nonvolatile memory technology. MRS Bull. 29, 829–832 (2004). (10.1557/mrs2004.236) / MRS Bull. by S Hudgens (2004)
  5. Lee, S. H. et al. Full integration and cell characteristics for 64 Mb nonvolatile PRAM. Proc. Symp. VLSI Tech. Dig. 20–21 (2004). (10.1109/VLSIT.2004.1345369)
  6. Lankhorst, M. H. R., Ketelaars, B. W. S. M. M. & Wolters, R. A. M. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nature Mater. 4, 347–352 (2005). (10.1038/nmat1350) / Nature Mater. by MHR Lankhorst (2005)
  7. Chen, Y. C. et al. Ultra-thin phase-change bridge memory device using GeSb. IEDM Tech. Dig. 1–3 (2006). (10.1109/IEDM.2006.346910)
  8. Lieber, C. M. Nanoscale science and technology: building a big future from small things. MRS Bull. 28, 486–491 (2003). (10.1557/mrs2003.144) / MRS Bull. by CM Lieber (2003)
  9. Agarwal, R. & Lieber, C. M. Semiconductor nanowires: optics and optoelectronics. Appl. Phys. A: Mater. Sci. Proc. 85, 209–215 (2006). (10.1007/s00339-006-3720-z) / Appl. Phys. A: Mater. Sci. Proc. by R Agarwal (2006)
  10. Lee, S. H., Ko, D. K., Jung, Y. & Agarwal, R. Size-dependent phase transition memory switching behavior and low writing currents in GeTe nanowires. Appl. Phys. Lett. 89, 223116 (2006). (10.1063/1.2397558) / Appl. Phys. Lett. by SH Lee (2006)
  11. Jung, Y., Lee, S. H., Ko, D. K. & Agarwal, R. Synthesis and characterization of Ge2Sb2Te5 nanowires with memory switching effect. J. Am. Chem. Soc. 128, 14026–14027 (2006). (10.1021/ja065938s) / J. Am. Chem. Soc. by Y Jung (2006)
  12. Yu, D., Wu, J., Gu, Q. & Park, H. Germanium telluride nanowires and nanohelices with memory-switching behavior. J. Am. Chem. Soc. 128, 8148–8149 (2006). (10.1021/ja0625071) / J. Am. Chem. Soc. by D Yu (2006)
  13. Hwang, Y. N. et al. Full integration and reliability evaluation of phase-change RAM based on 0.24 µm-CMOS technologies. Proc. Symp. VLSI Tech. Dig. 173–174 (2003). (10.1109/VLSIT.2003.1221141)
  14. Gill, M., Lowrey, T. & Park, J. Ovonic unified memory—a high-performance nonvolatile memory technology for stand alone and embedded applications. ISSCC Dig. Tech. Papers 202–203 (2002). (10.1109/ISSCC.2002.993006)
  15. Cho, W. Y. et al. A 0.18-µm 3.0-V 64-Mb nonvolatile phase-transition random access memory (PRAM). IEEE J. Solid-State Circ. 40, 293–300 (2005). (10.1109/JSSC.2004.837974) / IEEE J. Solid-State Circ. by WY Cho (2005)
  16. Happ, T. D. et al. Novel one-mask self-heating pillar phase change memory. Proc. Symp. VLSI Tech. Dig. 120–121 (2006). (10.1109/VLSIT.2006.1705246)
  17. Jeong, C. W. et al. Highly reliable ring-type contact for high-density phase change memory. Jpn. J. Appl. Phys. 45, 3233–3237 (2006). (10.1143/JJAP.45.3233) / Jpn. J. Appl. Phys. by CW Jeong (2006)
  18. Privitera, S., Bongiorno, C. & Rimini, E. Crystal nucleation and growth processes in Ge2Sb2Te5 . Appl. Phys. Lett. 84, 4448–4450 (2004). (10.1063/1.1759063) / Appl. Phys. Lett. by S Privitera (2004)
  19. Martens, H. C. F. & Vlutters, R. Thickness dependent crystallization speed in thin phase change layers used for optical recording. J. Appl. Phys. 95, 3977–3983 (2004). (10.1063/1.1667606) / J. Appl. Phys. by HCF Martens (2004)
  20. Khonik, V. A., Kitagawa, K. & Morii, H. On the determination of the crystallization activation energy of metallic glasses. J. Appl. Phys. 87, 8440–8443 (2000). (10.1063/1.373560) / J. Appl. Phys. by VA Khonik (2000)
  21. Couchman, P. R. & Jesser, W. A. Thermodynamic theory of size dependence of melting temperature in metals. Nature 269, 481–483 (1977). (10.1038/269481a0) / Nature by PR Couchman (1977)
  22. Goldstein, A. N., Echer, C. M. & Alivisatos, A. P. Melting in semiconductor nanocrystals. Science 256, 1425–1427 (1992). (10.1126/science.256.5062.1425) / Science by AN Goldstein (1992)
  23. Wu, Y. & Yang, P. Melting and welding semiconductor nanowires in nanotubes. Adv. Mater. 13, 520–523 (2001). (10.1002/1521-4095(200104)13:7<520::AID-ADMA520>3.0.CO;2-W) / Adv. Mater. by Y Wu (2001)
  24. Porter, D. A. & Eastering, K. E. in Phase Transformations in Metals and Alloys 2nd edn Ch. 5 (Chapman & Hall, London, 1992). (10.1007/978-1-4899-3051-4) / Phase Transformations in Metals and Alloys by DA Porter (1992)
  25. Kalb, J. A., Wen, C. Y., Spaepen, F., Dieker, H. & Wuttig, M. Crystal morphology and nucleation in thin films of amorphous Te alloys used for phase change recording. J. Appl. Phys. 98, 054902 (2005). (10.1063/1.2034655) / J. Appl. Phys. by JA Kalb (2005)
  26. Jeong, T. H., Kim, M. R., Seo, H., Kim, S. J. & Kim, S. Y. Crystallization behavior of sputter-deposited amorphous Ge2Sb2Te5 thin films. J. Appl. Phys. 86, 774–778 (1999). (10.1063/1.370803) / J. Appl. Phys. by TH Jeong (1999)
  27. Matsuzaki1, N. et al. Oxygen-doped GeSbTe phase-change memory cells featuring 1.5 V/100 µA standard 0.13 µm CMOS operations. IEDM Tech. Dig. 738–741 (2005). (10.1109/IEDM.2005.1609459)
  28. Horii, H. et al. A novel cell technology using N-doped GeSbTe films for phase change RAM. Proc. Symp. VLSI Tech. Dig. 177–178 (2003).
  29. Whang, D., Jin, S., Wu, Y. & Lieber, C. M. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 3, 1255–1259 (2003). (10.1021/nl0345062) / Nano Lett. by D Whang (2003)
  30. Schmidt, V., Riel, H., Senz, S., Karg, S., Riess, W. & Gosele U. Realization of a silicon nanowire vertical surround-gate field-effect transistor. Small 2, 85–88 (2006). (10.1002/smll.200500181) / Small by V Schmidt (2006)
Dates
Type When
Created 17 years, 11 months ago (Sept. 16, 2007, 1:49 p.m.)
Deposited 7 months ago (Jan. 20, 2025, 7:48 p.m.)
Indexed 14 hours, 39 minutes ago (Aug. 20, 2025, 8:46 a.m.)
Issued 17 years, 11 months ago (Sept. 16, 2007)
Published 17 years, 11 months ago (Sept. 16, 2007)
Published Online 17 years, 11 months ago (Sept. 16, 2007)
Published Print 17 years, 10 months ago (Oct. 1, 2007)
Funders 0

None

@article{Lee_2007, title={Highly scalable non-volatile and ultra-low-power phase-change nanowire memory}, volume={2}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2007.291}, DOI={10.1038/nnano.2007.291}, number={10}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Lee, Se-Ho and Jung, Yeonwoong and Agarwal, Ritesh}, year={2007}, month=sep, pages={626–630} }