Crossref
journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
References
30
Referenced
393
-
Ovshinsky, S. R. Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450–1453 (1968).
(
10.1103/PhysRevLett.21.1450
) / Phys. Rev. Lett. by SR Ovshinsky (1968) - Lai, S. & Lowrey, T. OUM-a 180 nm nonvolatile memory cell element technology for stand alone and embedded applications. IEDM Tech. Dig. 803–806 (2001).
- Pirovano, A. et al. Scaling analysis of phase-change memory technology. IEDM Tech. Dig. 699–702 (2003).
-
Hudgens, S. & Johnson, B. Overview of phase-change chalcogenide nonvolatile memory technology. MRS Bull. 29, 829–832 (2004).
(
10.1557/mrs2004.236
) / MRS Bull. by S Hudgens (2004) -
Lee, S. H. et al. Full integration and cell characteristics for 64 Mb nonvolatile PRAM. Proc. Symp. VLSI Tech. Dig. 20–21 (2004).
(
10.1109/VLSIT.2004.1345369
) -
Lankhorst, M. H. R., Ketelaars, B. W. S. M. M. & Wolters, R. A. M. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nature Mater. 4, 347–352 (2005).
(
10.1038/nmat1350
) / Nature Mater. by MHR Lankhorst (2005) -
Chen, Y. C. et al. Ultra-thin phase-change bridge memory device using GeSb. IEDM Tech. Dig. 1–3 (2006).
(
10.1109/IEDM.2006.346910
) -
Lieber, C. M. Nanoscale science and technology: building a big future from small things. MRS Bull. 28, 486–491 (2003).
(
10.1557/mrs2003.144
) / MRS Bull. by CM Lieber (2003) -
Agarwal, R. & Lieber, C. M. Semiconductor nanowires: optics and optoelectronics. Appl. Phys. A: Mater. Sci. Proc. 85, 209–215 (2006).
(
10.1007/s00339-006-3720-z
) / Appl. Phys. A: Mater. Sci. Proc. by R Agarwal (2006) -
Lee, S. H., Ko, D. K., Jung, Y. & Agarwal, R. Size-dependent phase transition memory switching behavior and low writing currents in GeTe nanowires. Appl. Phys. Lett. 89, 223116 (2006).
(
10.1063/1.2397558
) / Appl. Phys. Lett. by SH Lee (2006) -
Jung, Y., Lee, S. H., Ko, D. K. & Agarwal, R. Synthesis and characterization of Ge2Sb2Te5 nanowires with memory switching effect. J. Am. Chem. Soc. 128, 14026–14027 (2006).
(
10.1021/ja065938s
) / J. Am. Chem. Soc. by Y Jung (2006) -
Yu, D., Wu, J., Gu, Q. & Park, H. Germanium telluride nanowires and nanohelices with memory-switching behavior. J. Am. Chem. Soc. 128, 8148–8149 (2006).
(
10.1021/ja0625071
) / J. Am. Chem. Soc. by D Yu (2006) -
Hwang, Y. N. et al. Full integration and reliability evaluation of phase-change RAM based on 0.24 µm-CMOS technologies. Proc. Symp. VLSI Tech. Dig. 173–174 (2003).
(
10.1109/VLSIT.2003.1221141
) -
Gill, M., Lowrey, T. & Park, J. Ovonic unified memory—a high-performance nonvolatile memory technology for stand alone and embedded applications. ISSCC Dig. Tech. Papers 202–203 (2002).
(
10.1109/ISSCC.2002.993006
) -
Cho, W. Y. et al. A 0.18-µm 3.0-V 64-Mb nonvolatile phase-transition random access memory (PRAM). IEEE J. Solid-State Circ. 40, 293–300 (2005).
(
10.1109/JSSC.2004.837974
) / IEEE J. Solid-State Circ. by WY Cho (2005) -
Happ, T. D. et al. Novel one-mask self-heating pillar phase change memory. Proc. Symp. VLSI Tech. Dig. 120–121 (2006).
(
10.1109/VLSIT.2006.1705246
) -
Jeong, C. W. et al. Highly reliable ring-type contact for high-density phase change memory. Jpn. J. Appl. Phys. 45, 3233–3237 (2006).
(
10.1143/JJAP.45.3233
) / Jpn. J. Appl. Phys. by CW Jeong (2006) -
Privitera, S., Bongiorno, C. & Rimini, E. Crystal nucleation and growth processes in Ge2Sb2Te5 . Appl. Phys. Lett. 84, 4448–4450 (2004).
(
10.1063/1.1759063
) / Appl. Phys. Lett. by S Privitera (2004) -
Martens, H. C. F. & Vlutters, R. Thickness dependent crystallization speed in thin phase change layers used for optical recording. J. Appl. Phys. 95, 3977–3983 (2004).
(
10.1063/1.1667606
) / J. Appl. Phys. by HCF Martens (2004) -
Khonik, V. A., Kitagawa, K. & Morii, H. On the determination of the crystallization activation energy of metallic glasses. J. Appl. Phys. 87, 8440–8443 (2000).
(
10.1063/1.373560
) / J. Appl. Phys. by VA Khonik (2000) -
Couchman, P. R. & Jesser, W. A. Thermodynamic theory of size dependence of melting temperature in metals. Nature 269, 481–483 (1977).
(
10.1038/269481a0
) / Nature by PR Couchman (1977) -
Goldstein, A. N., Echer, C. M. & Alivisatos, A. P. Melting in semiconductor nanocrystals. Science 256, 1425–1427 (1992).
(
10.1126/science.256.5062.1425
) / Science by AN Goldstein (1992) -
Wu, Y. & Yang, P. Melting and welding semiconductor nanowires in nanotubes. Adv. Mater. 13, 520–523 (2001).
(
10.1002/1521-4095(200104)13:7<520::AID-ADMA520>3.0.CO;2-W
) / Adv. Mater. by Y Wu (2001) -
Porter, D. A. & Eastering, K. E. in Phase Transformations in Metals and Alloys 2nd edn Ch. 5 (Chapman & Hall, London, 1992).
(
10.1007/978-1-4899-3051-4
) / Phase Transformations in Metals and Alloys by DA Porter (1992) -
Kalb, J. A., Wen, C. Y., Spaepen, F., Dieker, H. & Wuttig, M. Crystal morphology and nucleation in thin films of amorphous Te alloys used for phase change recording. J. Appl. Phys. 98, 054902 (2005).
(
10.1063/1.2034655
) / J. Appl. Phys. by JA Kalb (2005) -
Jeong, T. H., Kim, M. R., Seo, H., Kim, S. J. & Kim, S. Y. Crystallization behavior of sputter-deposited amorphous Ge2Sb2Te5 thin films. J. Appl. Phys. 86, 774–778 (1999).
(
10.1063/1.370803
) / J. Appl. Phys. by TH Jeong (1999) -
Matsuzaki1, N. et al. Oxygen-doped GeSbTe phase-change memory cells featuring 1.5 V/100 µA standard 0.13 µm CMOS operations. IEDM Tech. Dig. 738–741 (2005).
(
10.1109/IEDM.2005.1609459
) - Horii, H. et al. A novel cell technology using N-doped GeSbTe films for phase change RAM. Proc. Symp. VLSI Tech. Dig. 177–178 (2003).
-
Whang, D., Jin, S., Wu, Y. & Lieber, C. M. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 3, 1255–1259 (2003).
(
10.1021/nl0345062
) / Nano Lett. by D Whang (2003) -
Schmidt, V., Riel, H., Senz, S., Karg, S., Riess, W. & Gosele U. Realization of a silicon nanowire vertical surround-gate field-effect transistor. Small 2, 85–88 (2006).
(
10.1002/smll.200500181
) / Small by V Schmidt (2006)
Dates
Type | When |
---|---|
Created | 17 years, 11 months ago (Sept. 16, 2007, 1:49 p.m.) |
Deposited | 7 months ago (Jan. 20, 2025, 7:48 p.m.) |
Indexed | 14 hours, 39 minutes ago (Aug. 20, 2025, 8:46 a.m.) |
Issued | 17 years, 11 months ago (Sept. 16, 2007) |
Published | 17 years, 11 months ago (Sept. 16, 2007) |
Published Online | 17 years, 11 months ago (Sept. 16, 2007) |
Published Print | 17 years, 10 months ago (Oct. 1, 2007) |
@article{Lee_2007, title={Highly scalable non-volatile and ultra-low-power phase-change nanowire memory}, volume={2}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2007.291}, DOI={10.1038/nnano.2007.291}, number={10}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={Lee, Se-Ho and Jung, Yeonwoong and Agarwal, Ritesh}, year={2007}, month=sep, pages={626–630} }