10.1038/nnano.2007.188
Crossref journal-article
Springer Science and Business Media LLC
Nature Nanotechnology (297)
Bibliography

de Silva, A. P., & Uchiyama, S. (2007). Molecular logic and computing. Nature Nanotechnology, 2(7), 399–410.

Authors 2
  1. A. Prasanna de Silva (first)
  2. Seiichi Uchiyama (additional)
References 103 Referenced 822
  1. Raymo, F. M. Digital processing and communication with molecular switches. Adv. Mater. 14, 401–414 (2002). (10.1002/1521-4095(20020318)14:6<401::AID-ADMA401>3.0.CO;2-F) / Adv. Mater. by FM Raymo (2002)
  2. Margulies, D. Felder, C. E., Melman, G. & Shanzer, A. A molecular keypad lock: a photochemical device capable of authorizing password entries. J. Am. Chem. Soc. 129, 347–354 (2007). (10.1021/ja065317z) / J. Am. Chem. Soc. by D Margulies (2007)
  3. Boole, G. An Investigation of the Laws of Thought (Dover, New York, 1958). / An Investigation of the Laws of Thought by G Boole (1958)
  4. Malvino, A. P. & Brown, J. A. Digital Computer Electronics 3rd edn (Glencoe, New York, 1993). / Digital Computer Electronics by AP Malvino (1993)
  5. Bray, D. Protein molecules as computational elements in living cells. Nature 376, 307–312 (1995). (10.1038/376307a0) / Nature by D Bray (1995)
  6. Williams, K. A. Three-dimensional structure of the ion-coupled transport protein NhaA. Nature 403, 112–115 (2000). (10.1038/47534) / Nature by KA Williams (2000)
  7. Lehn, J.-M. Supramolecular Chemistry (VCH, Weinheim, 1995). (10.1002/3527607439) / Supramolecular Chemistry by J-M Lehn (1995)
  8. Collier, C. P. et al. Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999). (10.1126/science.285.5426.391) / Science by CP Collier (1999)
  9. Amir, R. J., Popkov, M., Lerner, R. A., Barbas III, C. F. & Shabat, D. Prodrug activation gated by a molecular “OR” logic trigger. Angew. Chem. Int. Edn 44, 4378–4381 (2005). (10.1002/anie.200500842) / Angew. Chem. Int. Edn by RJ Amir (2005)
  10. Grynkiewicz, G., Poenie, M. & Tsien, R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985). (10.1016/S0021-9258(19)83641-4) / J. Biol. Chem. by G Grynkiewicz (1985)
  11. Holman, M. W. & Adams, D. M. Using single-molecule fluorescence spectroscopy to study electron transfer. ChemPhysChem 5, 1831–1836 (2004). (10.1002/cphc.200400123) / ChemPhysChem by MW Holman (2004)
  12. Uchiyama, S., McClean, G. D., Iwai, K. & de Silva, A. P. Membrane media create small nanospaces for molecular computation. J. Am. Chem. Soc. 127, 8920–8921 (2005). (10.1021/ja0513638) / J. Am. Chem. Soc. by S Uchiyama (2005)
  13. Drexler, K. E. Engines of Creation (Anchor Press, New York, 1986). / Engines of Creation by KE Drexler (1986)
  14. de Silva, A. P., Gunaratne, H. Q. N. & McCoy, C. P. A molecular photoionic AND gate based on fluorescent signalling. Nature 364, 42–44 (1993). (10.1038/364042a0) / Nature by AP de Silva (1993)
  15. Bissell, R. A. et al. Fluorescent PET (photoinduced electron transfer) sensors. Top. Curr. Chem. 168, 223–264 (1993). (10.1007/3-540-56746-1_12) / Top. Curr. Chem. by RA Bissell (1993)
  16. Komura, T., Niu, G. Y., Yamaguchi, T. & Asano, M. Redox and ionic-binding switched fluorescence of phenosafranine and thionine included in Nafion® films. Electrochim. Acta 48, 631–639 (2003). (10.1016/S0013-4686(02)00733-8) / Electrochim. Acta by T Komura (2003)
  17. Szaciłowski, K., Macyk, W. & Stochel, G. Light-driven OR and XOR programmable chemical logic gates. J. Am. Chem. Soc. 128, 4550–4551 (2006). (10.1021/ja060694x) / J. Am. Chem. Soc. by K Szaciłowski (2006)
  18. Biancardo, M., Bignozzi, C., Doyle, H. & Redmond, G. A potential and ion switched molecular photonic logic gate. Chem. Commun. 3918–3920 (2005). (10.1039/b507021j)
  19. Matsui, J., Mitsuishi, M., Aoki, A. & Miyashita, T. Molecular optical gating devices based on polymer nanosheets assemblies. J. Am. Chem. Soc. 126, 3708–3709 (2004). (10.1021/ja039871+) / J. Am. Chem. Soc. by J Matsui (2004)
  20. Yurke, B., Mills Jr., A. P. & Cheng, S. L. DNA implementation of addition in which the input strands are separate from the operator strands. Biosystems 52, 165–174 (1999). (10.1016/S0303-2647(99)00043-X) / Biosystems by B Yurke (1999)
  21. Schneider, H.-J., Tianjun, L., Lomadze, N. & Palm, B. Cooperativity in a chemomechanical polymer: a chemically induced macroscopic logic gate. Adv. Mater. 16, 613–615 (2004). (10.1002/adma.200306249) / Adv. Mater. by H-J Schneider (2004)
  22. Okamoto, A., Tanaka, K. & Saito, I. DNA logic gates. J. Am. Chem. Soc. 126, 9458–9463 (2004). (10.1021/ja047628k) / J. Am. Chem. Soc. by A Okamoto (2004)
  23. Ashkenasy, G. & Ghadiri, M. R. Boolean logic functions of a synthetic peptide network. J. Am. Chem. Soc. 126, 11140–11141 (2004). (10.1021/ja046745c) / J. Am. Chem. Soc. by G Ashkenasy (2004)
  24. Blittersdorf, R., Müller, J. & Schneider, F. W. Chemical visualization of Boolean functions: a simple chemical computer. J. Chem. Educ. 72, 760–763 (1995). (10.1021/ed072p760) / J. Chem. Educ. by R Blittersdorf (1995)
  25. Raymo, F. M. & Giordani, S. All-optical processing with molecular switches. Proc. Natl. Acad. Sci. USA 99, 4941–4944 (2002). (10.1073/pnas.062631199) / Proc. Natl. Acad. Sci. USA by FM Raymo (2002)
  26. Szaciłowski, K. Molecular logic gates based on pentacyanoferrate complexes: from simple gates to three-dimensional logic systems. Chem. Eur. J. 10, 2520–2528 (2004). (10.1002/chem.200305663) / Chem. Eur. J. by K Szaciłowski (2004)
  27. de Silva, A. P. et al. Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566 (1997). (10.1021/cr960386p) / Chem. Rev. by AP de Silva (1997)
  28. Balzani, V., Credi, A. & Venturi, M. Molecular Devices and Machines (Wiley-VCH, Weinheim, 2003). / Molecular Devices and Machines by V Balzani (2003)
  29. de Silva, A. P. & McClenaghan, N. D. Molecular-scale logic gates. Chem. Eur. J. 10, 574–586 (2004). (10.1002/chem.200305054) / Chem. Eur. J. by AP de Silva (2004)
  30. de Silva, A. P. & McClenaghan, N. D. Simultaneously multiply-configurable or superposed molecular logic systems composed of ICT (internal charge transfer) chromophores and fluorophores integrated with one- or two-ion receptors. Chem. Eur. J. 8, 4935–4945 (2002). (10.1002/1521-3765(20021104)8:21<4935::AID-CHEM4935>3.0.CO;2-2) / Chem. Eur. J. by AP de Silva (2002)
  31. de Silva, A. P. & McClenaghan, N. D. Proof-of-principle of molecular-scale arithmetic. J. Am. Chem. Soc. 122, 3965–3966 (2000). (10.1021/ja994080m) / J. Am. Chem. Soc. by AP de Silva (2000)
  32. Zhou, Y., Zhang, D., Zhang, Y., Tang, Y. & Zhu, D. Tuning the CD spectrum and optical rotation value of a new binaphthalene molecule with two spiropyran units: mimicking the function of a molecular “AND” logic gate and a new chiral molecular switch. J. Org. Chem. 70, 6164–6170 (2005). (10.1021/jo050489k) / J. Org. Chem. by Y Zhou (2005)
  33. Tamaki, T. & Ichimura, K. Photochromic chelating spironaphthoxazines. J. Chem. Soc., Chem. Commun. 1477–1479 (1989). (10.1039/c39890001477)
  34. Gobbi, L., Seiler, P. & Diederich, F. A novel three-way chromophoric molecular switch: pH and light controllable switching cycles. Angew. Chem. Int. Edn 38, 674–678 (1999). (10.1002/(SICI)1521-3773(19990301)38:5<674::AID-ANIE674>3.0.CO;2-0) / Angew. Chem. Int. Edn by L Gobbi (1999)
  35. Wojtyk, J. T. C., Kazmaier, P. M. & Buncel, E. Effects of metal ion complexation on the spiropyran–merocyanine interconversion: development of a thermally stable photo-switch. Chem. Commun. 1703–1704 (1998). (10.1039/a804908d)
  36. Raymo, F. M. & Giordani, S. Multichannel digital transmission in an optical network of communicating molecules. J. Am. Chem. Soc. 124, 2004–2007 (2002). (10.1021/ja016920e) / J. Am. Chem. Soc. by FM Raymo (2002)
  37. Baron, R., Lioubashevski, O., Katz, E., Niazov, T. & Willner, I. Two coupled enzymes perform in parallel the 'AND' and 'InhibAND' logic gate operations. Org. Biomol. Chem. 4, 989–991 (2006). (10.1039/b518205k) / Org. Biomol. Chem. by R Baron (2006)
  38. Baron, R., Lioubashevski, O., Katz, E., Niazov, T. & Willner, I. Elementary arithmetic operations by enzymes: a model for metabolic pathway based computing. Angew. Chem. Int. Edn 45, 1572–1576 (2006). (10.1002/anie.200503314) / Angew. Chem. Int. Edn by R Baron (2006)
  39. Zauner, K.-P. & Conrad, M. Enzymatic Computing. Biotechnol. Prog. 17, 553–559 (2001). (10.1021/bp010004n) / Biotechnol. Prog. by K-P Zauner (2001)
  40. Deonarine, A. S., Clark, S. M. & Konermann, L. Implementation of a multifunctional logic gate based on folding/unfolding transitions of a protein. Future Gener. Comp. Sy. 19, 87–97 (2003). (10.1016/S0167-739X(02)00110-3) / Future Gener. Comp. Sy. by AS Deonarine (2003)
  41. Sivan, S., Tuchman, S. & Lotan, N. A biochemical logic gate using an enzyme and its inhibitor. Part II: The logic gate. BioSystems 70, 21–33 (2003). (10.1016/S0303-2647(03)00039-X) / BioSystems by S Sivan (2003)
  42. Adleman, L. M. Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994). (10.1126/science.7973651) / Science by LM Adleman (1994)
  43. Stojanovic, M. N., Mitchell, T. E. & Stefanovic, D. Deoxyribozyme-based logic gates. J. Am. Chem. Soc. 124, 3555–3561 (2002). (10.1021/ja016756v) / J. Am. Chem. Soc. by MN Stojanovic (2002)
  44. Hod, O., Baer, R. & Rabani, E. A parallel electromagnetic molecular logic gate. J. Am. Chem. Soc. 127, 1648–1649 (2005). (10.1021/ja043366a) / J. Am. Chem. Soc. by O Hod (2005)
  45. Tour, J. M. in Stimulating Concepts in Chemistry (eds. Vögtle, F. Stoddart, J. F. & Shibasaki, M.) 237–253 (Wiley-VCH, Weinheim, 2000). / Stimulating Concepts in Chemistry by JM Tour (2000)
  46. Kele, P., Orbulescu, J., Gawley, R. E. & Leblanc, R. M. Spectroscopic detection of saxitoxin: An alternative to mouse bioassay. Chem. Commun. 1494–1496 (2006). (10.1039/b600383d)
  47. Hall, M. J., Allen, L. T. & O'Shea, D. F. PET modulated fluorescent sensing from the BF2 chelated azadipyrromethene platform. Org. Biomol. Chem. 4, 776–780 (2006). (10.1039/b514788c) / Org. Biomol. Chem. by MJ Hall (2006)
  48. Kwon, J. Y. et al. A highly selective fluorescent chemosensor for Pb2+. J. Am. Chem. Soc. 127, 10107–10111 (2005). (10.1021/ja051075b) / J. Am. Chem. Soc. by JY Kwon (2005)
  49. Yoon, S., Albers, A. E., Wong, A. P. & Chang, C. J. Screening mercury levels in fish with a selective fluorescent chemosensor. J. Am. Chem. Soc. 127, 16030–16031 (2005). (10.1021/ja0557987) / J. Am. Chem. Soc. by S Yoon (2005)
  50. Banthia, S. & Samanta, A. A two-dimensional chromogenic sensor as well as fluorescence inverter: selective detection of copper(II) in aqueous medium. New J. Chem. 29, 1007–1010 (2005). (10.1039/b504823k) / New J. Chem. by S Banthia (2005)
  51. Dale, T. J. & Rebek Jr., J. Fluorescent sensors for organophosphorus nerve agent mimics. J. Am. Chem. Soc. 128, 4500–4501 (2006). (10.1021/ja057449i) / J. Am. Chem. Soc. by TJ Dale (2006)
  52. Bencic-Nagale, S., Sternfeld, T. & Walt, D. R. Microbead chemical switches: An approach to detection of reactive organophosphate chemical warfare agent vapors. J. Am. Chem. Soc. 128, 5041–5048 (2006). (10.1021/ja057057b) / J. Am. Chem. Soc. by S Bencic-Nagale (2006)
  53. de Silva, A. P., Gunaratne, H. Q. N. & Gunnlaugsson, T. Fluorescent PET (photoinduced electron transfer) reagents for thiols. Tetrahedron Lett. 39, 5077–5080 (1998). (10.1016/S0040-4039(98)00909-5) / Tetrahedron Lett. by AP de Silva (1998)
  54. Cooper, C. R. & James, T. D. Selective D-glucosamine hydrochloride fluorescence signalling based on ammonium cation and diol recognition. Chem. Commun. 1419–1420 (1997). (10.1039/a703300a)
  55. Fages, F. et al. Synthesis and fluorescence emission properties of a bis-anthracenyl macrotricyclic ditopic receptor. Crystal structure of its dinuclear rubidium cryptate. J. Chem. Soc., Chem. Commun. 655–658 (1990). (10.1039/c39900000655)
  56. de Silva, A. P. & Sandanayake, K. R. A. S. Fluorescence “off-on” signalling upon linear recognition and binding of α,ω-alkanediyldiammonium ions by 9,10-bis{(1-aza-4,7,10,13,16-pentaoxacyclooctadecyl)methyl}anthracene. Angew. Chem. Int. Edn Engl. 29, 1173–1175 (1990). (10.1002/anie.199011731) / Angew. Chem. Int. Edn Engl. by AP de Silva (1990)
  57. Misumi, S. Recognitory coloration of cations with chromoacerands. Top. Curr. Chem. 165, 163–192 (1993). (10.1007/BFb0111284) / Top. Curr. Chem. by S Misumi (1993)
  58. Secor, K., Plante, J., Avetta, C. & Glass, T. Fluorescent sensors for diamines. J. Mater. Chem. 15, 4073–4077 (2005). (10.1039/b503269e) / J. Mater. Chem. by K Secor (2005)
  59. Zhao, J., Fyles, T. M. & James, T. D. Chiral binol-bisboronic acid as fluorescence sensor for sugar acids. Angew. Chem. Int. Edn 43, 3461–3464 (2004). (10.1002/anie.200454033) / Angew. Chem. Int. Edn by J Zhao (2004)
  60. James, T. D., Sandanayake, K. R. A. S. & Shinkai, S. Chiral discrimination of monosaccharides using a fluorescent molecular sensor. Nature 374, 345–347 (1995). (10.1038/374345a0) / Nature by TD James (1995)
  61. Gray Jr., C. W. & Houston, T. A. Boronic acid receptors for α-hydroxycarboxylates: high affinity of Shinkai's glucose receptor for tartrate. J. Org. Chem. 67, 5426–5428 (2002). (10.1021/jo025876y) / J. Org. Chem. by CW Gray Jr. (2002)
  62. He, J. X. et al. Metal-free silicon-molecule-nanotube testbed and memory device. Nature Mater. 5, 63–68 (2006). (10.1038/nmat1526) / Nature Mater. by JX He (2006)
  63. de Silva, A. P. et al. Integration of logic functions and sequential operation of gates at the molecular-scale. J. Am. Chem. Soc. 121, 1393–1394 (1999). (10.1021/ja982909b) / J. Am. Chem. Soc. by AP de Silva (1999)
  64. Mu, L. X., Wang, Y., Zhang, Z. & Jin, W. J. Room temperature phosphorescence pH switch based on photo-induced electron transfer. Chinese Chem. Lett. 15, 1131–1134 (2004). / Chinese Chem. Lett. by LX Mu (2004)
  65. de Sousa, M., de Castro, B., Abad, S., Miranda, M. A. & Pischel, U. A molecular tool kit for the variable design of logic operations (NOR, INH, EnNOR). Chem. Commun. 2051–2053 (2006). (10.1039/b600932h)
  66. Cheng, P.-N., Chiang, P.-T. & Chiu, S.-H. A switchable macrocycle-clip complex that functions as a NOR logic gate. Chem. Commun. 1285–1287 (2005). (10.1039/B417823H)
  67. Giordani, S., Cejas, M. A. & Raymo, F. M. Photoinduced proton exchange between molecular switches. Tetrahedron 60, 10973–10981 (2004). (10.1016/j.tet.2004.09.065) / Tetrahedron by S Giordani (2004)
  68. Margulies, D., Melman, G. & Shanzer, A. Fluorescein as a model molecular calculator with reset capability. Nature Mater. 4, 768–771 (2005). (10.1038/nmat1469) / Nature Mater. by D Margulies (2005)
  69. Shiraishi, Y., Tokitoh, Y. & Hirai, T. A fluorescent molecular logic gate with multiply-configurable dual outputs. Chem. Commun. 5316–5318 (2005). (10.1039/b510800d)
  70. Alves, S. et. al. Open-chain polyamine ligands bearing an anthracene unit–chemosensors for logic operations at the molecular level. Eur. J. Inorg. Chem. 405–412 (2001). (10.1002/1099-0682(200102)2001:2<405::AID-EJIC405>3.0.CO;2-M) / European Journal of Inorganic Chemistry by Sérgio Alves (2001)
  71. Callan, J. F., de Silva, A. P. & McClenaghan, N. D. Switching between molecular switch types by module rearrangement: Ca2+-enabled, H+-driven 'off-on-off', H+-driven YES and PASS 0 as well as H+, Ca2+-driven AND logic operations. Chem. Commun. 2048–2049 (2004).
  72. Qu, D.-H., Wang, Q.-C. & Tian, H. A half adder based on a photochemically driven [2]rotaxane. Angew. Chem. Int. Edn 44, 5296–5299 (2005). (10.1002/anie.200501215) / Angew. Chem. Int. Edn by D-H Qu (2005)
  73. Andréasson, J. et al. Molecule-based photonically switched half-adder. J. Am. Chem. Soc. 126, 15926–15927 (2004). (10.1021/ja045577l) / J. Am. Chem. Soc. by J Andréasson (2004)
  74. Lederman, H., Macdonald, J., Stefanovic, D. & Stojanovic, M. N. Deoxyribozyme-based three-input logic gates and construction of a molecular full adder. Biochemistry 45, 1194–1199 (2006). (10.1021/bi051871u) / Biochemistry by H Lederman (2006)
  75. Guo, X., Zhang, D., Zhang, G. & Zhu, D. Monomolecular logic: “half-adder” based on multistate/multifunctional photochromic spiropyrans. J. Phys. Chem. B 108, 11942–11945 (2004). (10.1021/jp047706q) / J. Phys. Chem. B by X Guo (2004)
  76. Stojanovic, M. N. & Stefanovic, D. A deoxyribozyme-based molecular automaton. Nature Biotechnol. 21, 1069–1074 (2003). (10.1038/nbt862) / Nature Biotechnol. by MN Stojanovic (2003)
  77. Wild, U. P., Bernet, S., Kohler, B. & Renn, A. From supramolecular photochemistry to the molecular computer. Pure Appl. Chem. 64, 1335–1342 (1992). (10.1351/pac199264091335) / Pure Appl. Chem. by UP Wild (1992)
  78. Margulies, D., Melman, G. & Shanzer, A. A molecular full-adder and full-subtractor, an additional step toward a moleculator. J. Am. Chem. Soc. 128, 4865–4871 (2006). (10.1021/ja058564w) / J. Am. Chem. Soc. by D Margulies (2006)
  79. Tour, J. M. Molecular electronics. Synthesis and testing of components. Acc. Chem. Res. 33, 791–804 (2000). (10.1021/ar0000612) / Acc. Chem. Res. by JM Tour (2000)
  80. Williams, R. S., quoted in Ball, P. Chemistry meets computing. Nature 406, 118–120 (2000). (10.1038/35021300) / Nature by RS Williams (2000)
  81. Cox, J. C., Cohen, D. S. & Ellington, A. D. The complexities of DNA computation. Trends Biotechnol. 17, 151–154 (1999). (10.1016/S0167-7799(99)01312-8) / Trends Biotechnol. by JC Cox (1999)
  82. Lam, K. S. et al. A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354, 82–84 (1991). (10.1038/354082a0) / Nature by KS Lam (1991)
  83. Furka, Á., Sebestyén, F., Asgedom, M. & Dibó, G. General-method for rapid synthesis of multicomponent peptide mixtures. Int. J. Pept. Prot. Res. 37, 487–493 (1991). (10.1111/j.1399-3011.1991.tb00765.x) / Int. J. Pept. Prot. Res. by Á Furka (1991)
  84. Shepard, S. RFID: Radio Frequency Identification (McGraw-Hill, New York, 2005). / RFID: Radio Frequency Identification by S Shepard (2005)
  85. Nicolaou, K. C., Xiao, X.-Y., Parandoosh, Z., Senyei, A. & Nova, M. P. Radiofrequency encoded combinatorial chemistry. Angew. Chem. Int. Edn Engl. 34, 2289–2291 (1995). (10.1002/anie.199522891) / Angew. Chem. Int. Edn Engl. by KC Nicolaou (1995)
  86. Moran, E. J. et al. Radio frequency tag encoded combinatorial library method for discovery of tripeptide-substituted cinnamic acid inhibitors of the protein tyrosine phosphatase PTP1B. J. Am. Chem. Soc. 117, 10787–10788 (1995). (10.1021/ja00148a039) / J. Am. Chem. Soc. by EJ Moran (1995)
  87. Walt, D. R. Bead-based fiber-optic arrays. Science 287, 451–452 (2000). (10.1126/science.287.5452.451) / Science by DR Walt (2000)
  88. Battersby, B. J., Lawrie, G. A., Johnston, A. P. R. & Trau, M. Optical barcoding of colloidal suspensions: applications in genomics, proteomics and drug discovery. Chem. Commun. 1435–1441 (2002). (10.1039/b200038p)
  89. de Silva, A. P., James, M. R., McKinney, B. O. F., Pears, P. A. & Weir, S. M. Molecular computational elements encode large populations of small objects. Nature Mater. 5, 787–790 (2006). (10.1038/nmat1733) / Nature Mater. by AP de Silva (2006)
  90. Hayes, B. Third base. Am. Scientist 89, 490–494 (2001). (10.1511/2001.40.3268) / Am. Scientist by B Hayes (2001)
  91. Callan, J. F., de Silva, A. P., Ferguson, J., Huxley, A. J. M. & O'Brien, A. M. Fluorescent photoionic devices with two receptors and two switching mechanisms: applications to pH sensors and implications for metal ion detection. Tetrahedron 60, 11125–11131 (2004). (10.1016/j.tet.2004.08.057) / Tetrahedron by JF Callan (2004)
  92. Magri, D. C., Brown, G. J., McClean, G. D. & de Silva, A. P. Communicating chemical congregation: a molecular AND logic gate with three chemical inputs as a “lab-on-a-molecule” prototype. J. Am. Chem. Soc. 128, 4950–4951 (2006). (10.1021/ja058295+) / J. Am. Chem. Soc. by DC Magri (2006)
  93. Gunnlaugsson, T., Lee, T. C. & Parkesh, R. A highly selective and sensitive fluorescent PET (photoinduced electron transfer) chemosensor for Zn(II). Org. Biomol. Chem. 1, 3265–3267 (2003). (10.1039/b309569j) / Org. Biomol. Chem. by T Gunnlaugsson (2003)
  94. Lankshear, M. D., Cowley, A. R. & Beer, P. D. Cooperative AND receptor for ion-pairs. Chem. Commun. 612–614 (2006). (10.1039/b515634c)
  95. Koskela, S. J. M., Fyles, T. M. & James, T. D. A ditopic fluorescent sensor for potassium fluoride. Chem. Commun. 945–947 (2005). (10.1039/b415522j)
  96. Saghatelian, A., Völcker, N. H., Guckian, K. M., Lin, V. S.-Y. & Ghadiri, M. R. DNA-based photonic logic gates: AND, NAND, and INHIBIT. J. Am. Chem. Soc. 125, 346–347 (2003). (10.1021/ja029009m) / J. Am. Chem. Soc. by A Saghatelian (2003)
  97. Gust, D., Moore, T. A. & Moore, A. L. Molecular switches controlled by light. Chem. Commun. 1169–1178 (2006). (10.1039/B514736K)
  98. Pina, F. et al. Multistate/multifunctional molecular-level systems: light and pH switching between the various forms of a synthetic flavylium salt. Chem. Eur. J. 4, 1184–1191 (1998). (10.1002/(SICI)1521-3765(19980710)4:7<1184::AID-CHEM1184>3.0.CO;2-6) / Chem. Eur. J. by F Pina (1998)
  99. Uchiyama, S., Kawai, N., de Silva, A. P. & Iwai, K. Fluorescent polymeric AND logic gate with temperature and pH as inputs. J. Am. Chem. Soc. 126, 3032–3033 (2004). (10.1021/ja039697p) / J. Am. Chem. Soc. by S Uchiyama (2004)
  100. Leigh, D. A. et al. Patterning through controlled submolecular motion: rotaxane-based switches and logic gates that function in solution and polymer films. Angew. Chem. Int. Edn 44, 3062–3067 (2005). (10.1002/anie.200500101) / Angew. Chem. Int. Edn by DA Leigh (2005)
  101. Penchovsky, R. & Breaker, R. R. Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes. Nature Biotechnol. 23, 1424–1433 (2005). (10.1038/nbt1155) / Nature Biotechnol. by R Penchovsky (2005)
  102. Remacle, F., Speiser, S. & Levine, R. D. Intermolecular and intramolecular logic gates. J. Phys. Chem. B 105, 5589–5591 (2001). (10.1021/jp0101211) / J. Phys. Chem. B by F Remacle (2001)
  103. Remacle, F., Weinkauf, R. & Levine, R. D. Molecule-based photonically switched half and full adder. J. Phys. Chem. A 110, 177–184 (2006). (10.1021/jp0557417) / J. Phys. Chem. A by F Remacle (2006)
Dates
Type When
Created 18 years, 2 months ago (July 4, 2007, 4:40 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 8:07 p.m.)
Indexed 2 days, 10 hours ago (Sept. 4, 2025, 10:12 a.m.)
Issued 18 years, 2 months ago (July 1, 2007)
Published 18 years, 2 months ago (July 1, 2007)
Published Print 18 years, 2 months ago (July 1, 2007)
Funders 0

None

@article{de_Silva_2007, title={Molecular logic and computing}, volume={2}, ISSN={1748-3395}, url={http://dx.doi.org/10.1038/nnano.2007.188}, DOI={10.1038/nnano.2007.188}, number={7}, journal={Nature Nanotechnology}, publisher={Springer Science and Business Media LLC}, author={de Silva, A. Prasanna and Uchiyama, Seiichi}, year={2007}, month=jul, pages={399–410} }