Crossref journal-article
Springer Science and Business Media LLC
Nature Neuroscience (297)
Bibliography

Kole, M. H. P., Ilschner, S. U., Kampa, B. M., Williams, S. R., Ruben, P. C., & Stuart, G. J. (2008). Action potential generation requires a high sodium channel density in the axon initial segment. Nature Neuroscience, 11(2), 178–186.

Authors 6
  1. Maarten H P Kole (first)
  2. Susanne U Ilschner (additional)
  3. Björn M Kampa (additional)
  4. Stephen R Williams (additional)
  5. Peter C Ruben (additional)
  6. Greg J Stuart (additional)
References 50 Referenced 575
  1. Coombs, J.S., Curtis, D.R. & Eccles, J.C. The generation of impulses in motoneurones. J. Physiol. (Lond.) 139, 232–249 (1957). (10.1113/jphysiol.1957.sp005888) / J. Physiol. (Lond.) by JS Coombs (1957)
  2. Fatt, P. Sequence of events in synaptic activation of a motoneurone. J. Neurophysiol. 20, 61–80 (1957). (10.1152/jn.1957.20.1.61) / J. Neurophysiol. by P Fatt (1957)
  3. Fuortes, M.G.F., Frank, K. & Becker, M.C. Steps in the production of motoneuron spikes. J. Gen. Physiol. 40, 735–752 (1957). (10.1085/jgp.40.5.735) / J. Gen. Physiol. by MGF Fuortes (1957)
  4. Eccles, J.C. The Physiology of Synapses (Springer, Berlin, 1964). (10.1007/978-3-642-64950-9) / The Physiology of Synapses by JC Eccles (1964)
  5. Stuart, G.J. & Sakmann, B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72 (1994). (10.1038/367069a0) / Nature by GJ Stuart (1994)
  6. Stuart, G. & Hausser, M. Initiation and spread of sodium action potentials in cerebellar Purkinje cells. Neuron 13, 703–712 (1994). (10.1016/0896-6273(94)90037-X) / Neuron by G Stuart (1994)
  7. Colbert, C.M. & Johnston, D. Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons. J. Neurosci. 16, 6676–6686 (1996). (10.1523/JNEUROSCI.16-21-06676.1996) / J. Neurosci. by CM Colbert (1996)
  8. Stuart, G., Schiller, J. & Sakmann, B. Action potential initiation and propagation in rat neocortical pyramidal neurons. J. Physiol. (Lond.) 505, 617–632 (1997). (10.1111/j.1469-7793.1997.617ba.x) / J. Physiol. (Lond.) by G Stuart (1997)
  9. Clark, B.A., Monsivais, P., Branco, T., London, M. & Hausser, M. The site of action potential initiation in cerebellar Purkinje neurons. Nat. Neurosci. 8, 137–139 (2005). (10.1038/nn1390) / Nat. Neurosci. by BA Clark (2005)
  10. Shu, Y., Duque, A., Yu, Y., Haider, B. & McCormick, D.A. Properties of action-potential initiation in neocortical pyramidal cells: evidence from whole-cell axon recordings. J. Neurophysiol. 97, 746–760 (2007). (10.1152/jn.00922.2006) / J. Neurophysiol. by Y Shu (2007)
  11. Meeks, J.P. & Mennerick, S. Action potential initiation and propagation in CA3 pyramidal axons. J. Neurophysiol. 97, 3460–3472 (2007). (10.1152/jn.01288.2006) / J. Neurophysiol. by JP Meeks (2007)
  12. Palmer, L.M. & Stuart, G.J. Site of action potential initiation in layer 5 pyramidal neurons. J. Neurosci. 26, 1854–1863 (2006). (10.1523/JNEUROSCI.4812-05.2006) / J. Neurosci. by LM Palmer (2006)
  13. Kole, M.H.P., Letzkus, J.J. & Stuart, G.J. Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron 55, 633–647 (2007). (10.1016/j.neuron.2007.07.031) / Neuron by MHP Kole (2007)
  14. Dodge, F.A. & Cooley, J.W. Action potential of the motoneuron. IBM J. Res. Develop. 17, 219–229 (1973). (10.1147/rd.173.0219) / IBM J. Res. Develop. by FA Dodge (1973)
  15. Moore, J.W., Stockbridge, N. & Westerfield, M. On the site of impulse initiation in a neurone. J. Physiol. (Lond.) 336, 301–311 (1983). (10.1113/jphysiol.1983.sp014582) / J. Physiol. (Lond.) by JW Moore (1983)
  16. Mainen, Z.F., Joerges, J., Huguenard, J.R. & Sejnowski, T.J. A model of spike initiation in neocortical pyramidal neurons. Neuron 15, 1427–1439 (1995). (10.1016/0896-6273(95)90020-9) / Neuron by ZF Mainen (1995)
  17. Rapp, M., Yarom, Y. & Segev, I. Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal cells. Proc. Natl. Acad. Sci. USA 93, 11985–11990 (1996). (10.1073/pnas.93.21.11985) / Proc. Natl. Acad. Sci. USA by M Rapp (1996)
  18. Wollner, D.A. & Catterall, W.A. Localization of sodium channels in axon hillocks and initial segments of retinal ganglion cells. Proc. Natl. Acad. Sci. USA 83, 8424–8428 (1986). (10.1073/pnas.83.21.8424) / Proc. Natl. Acad. Sci. USA by DA Wollner (1986)
  19. Zhou, D. et al. AnkyrinG is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing. J. Cell Biol. 143, 1295–1304 (1998). (10.1083/jcb.143.5.1295) / J. Cell Biol. by D Zhou (1998)
  20. Kordeli, E., Lambert, S. & Bennett, V. AnkyrinG. A new ankyrin gene with neural-specific isoforms localized at the axonal initial segment and node of Ranvier. J. Biol. Chem. 270, 2352–2359 (1995). (10.1074/jbc.270.5.2352) / J. Biol. Chem. by E Kordeli (1995)
  21. Komada, M. & Soriano, P. ßIV-spectrin regulates sodium channel clustering through ankyrin-G at axon initial segments and nodes of Ranvier. J. Cell Biol. 156, 337–348 (2002). (10.1083/jcb.200110003) / J. Cell Biol. by M Komada (2002)
  22. Boiko, T. et al. Functional specialization of the axon initial segment by isoform-specific sodium channel targeting. J. Neurosci. 23, 2306–2313 (2003). (10.1523/JNEUROSCI.23-06-02306.2003) / J. Neurosci. by T Boiko (2003)
  23. Inda, M.C., DeFelipe, J. & Munoz, A. Voltage-gated ion channels in the axon initial segment of human cortical pyramidal cells and their relationship with chandelier cells. Proc. Natl. Acad. Sci. USA 103, 2920–2925 (2006). (10.1073/pnas.0511197103) / Proc. Natl. Acad. Sci. USA by MC Inda (2006)
  24. Van Wart, A., Trimmer, J.S. & Matthews, G. Polarized distribution of ion channels within microdomains of the axon initial segment. J. Comp. Neurol. 500, 339–352 (2007). (10.1002/cne.21173) / J. Comp. Neurol. by A Van Wart (2007)
  25. Colbert, C.M. & Pan, E. Ion channel properties underlying axonal action potential initiation in pyramidal neurons. Nat. Neurosci. 5, 533–538 (2002). (10.1038/nn0602-857) / Nat. Neurosci. by CM Colbert (2002)
  26. Ulbricht, W. Sodium channel inactivation: molecular determinants and modulation. Physiol. Rev. 85, 1271–1301 (2005). (10.1152/physrev.00024.2004) / Physiol. Rev. by W Ulbricht (2005)
  27. Lasser-Ross, N. & Ross, W.N. Imaging voltage and synaptically activated sodium transients in cerebellar Purkinje cells. Proc. Biol. Sci. 247, 35–39 (1992). (10.1098/rspb.1992.0006) / Proc. Biol. Sci. by N Lasser-Ross (1992)
  28. Nakada, C. et al. Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization. Nat. Cell Biol. 5, 626–632 (2003). (10.1038/ncb1009) / Nat. Cell Biol. by C Nakada (2003)
  29. Milton, R.L. & Caldwell, J.H. Na current in membrane blebs: implications for channel mobility and patch clamp recording. J. Neurosci. 10, 885–893 (1990). (10.1523/JNEUROSCI.10-03-00885.1990) / J. Neurosci. by RL Milton (1990)
  30. Magee, J.C. & Johnston, D. Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J. Physiol. (Lond.) 487, 67–90 (1995). (10.1113/jphysiol.1995.sp020862) / J. Physiol. (Lond.) by JC Magee (1995)
  31. Shrager, P. Sodium channels in single demyelinated mammalian axons. Brain Res. 483, 149–154 (1989). (10.1016/0006-8993(89)90046-2) / Brain Res. by P Shrager (1989)
  32. Boiko, T. et al. Compact myelin dictates the differential targeting of two sodium channel isoforms in the same axon. Neuron 30, 91–104 (2001). (10.1016/S0896-6273(01)00265-3) / Neuron by T Boiko (2001)
  33. Kaplan, M.R. et al. Differential control of clustering of the sodium channels Na(v)1.2 and Na(v)1.6 at developing CNS nodes of Ranvier. Neuron 30, 105–119 (2001). (10.1016/S0896-6273(01)00266-5) / Neuron by MR Kaplan (2001)
  34. Rush, A.M., Dib-Hajj, S.D. & Waxman, S.G. Electrophysiological properties of two axonal sodium channels, Nav1.2 and Nav1.6, expressed in mouse spinal sensory neurones. J. Physiol. (Lond.) 564, 803–815 (2005). (10.1113/jphysiol.2005.083089) / J. Physiol. (Lond.) by AM Rush (2005)
  35. Komai, S. et al. Postsynaptic excitability is necessary for strengthening of cortical sensory responses during experience-dependent development. Nat. Neurosci. 9, 1125–1133 (2006). (10.1038/nn1752) / Nat. Neurosci. by S Komai (2006)
  36. Peters, A., Proskauer, C.C. & Kaiserman-Abramof, I.R. The small pyramidal neuron of the rat cerebral cortex. The axon hillock and initial segment. J. Cell Biol. 39, 604–619 (1968). (10.1083/jcb.39.3.604) / J. Cell Biol. by A Peters (1968)
  37. Winckler, B., Forscher, P. & Mellman, I. A diffusion barrier maintains distribution of membrane proteins in polarized neurons. Nature 397, 698–701 (1999). (10.1038/17806) / Nature by B Winckler (1999)
  38. Garrido, J.J. et al. A targeting motif involved in sodium channel clustering at the axonal initial segment. Science 300, 2091–2094 (2003). (10.1126/science.1085167) / Science by JJ Garrido (2003)
  39. Lai, H.C. & Jan, L.Y. The distribution and targeting of neuronal voltage-gated ion channels. Nat. Rev. Neurosci. 7, 548–562 (2006). (10.1038/nrn1938) / Nat. Rev. Neurosci. by HC Lai (2006)
  40. Howard, A., Tamas, G. & Soltesz, I. Lighting the chandelier: new vistas for axo-axonic cells. Trends Neurosci. 28, 310–316 (2005). (10.1016/j.tins.2005.04.004) / Trends Neurosci. by A Howard (2005)
  41. Kuba, H., Ishii, T.M. & Ohmori, H. Axonal site of spike initiation enhances auditory coincidence detection. Nature 444, 1069–1072 (2006). (10.1038/nature05347) / Nature by H Kuba (2006)
  42. Stuart, G.J., Dodt, H.-U. & Sakmann, B. Patch-clamp recordings from the soma and dendrites of neurones in brain slices using infrared video microscopy. Pflugers Arch. 423, 511–518 (1993). (10.1007/BF00374949) / Pflugers Arch. by GJ Stuart (1993)
  43. Carnevale, N.T. & Hines, M.L. The Neuron Book (Cambridge University Press, Cambridge, 2006). (10.1017/CBO9780511541612) / The Neuron Book by NT Carnevale (2006)
  44. Sloper, J.J. & Powell, T.P. A study of the axon initial segment and proximal axon of neurons in the primate motor and somatic sensory cortices. Phil. Trans. R. Soc. Lond. B 285, 173–197 (1979). (10.1098/rstb.1979.0004) / Phil. Trans. R. Soc. Lond. B by JJ Sloper (1979)
  45. Neumcke, B. & Stämpfli, R. Sodium currents and sodium-current fluctuations in rat myelinated nerve fibres. J. Physiol. (Lond.) 329, 163–184 (1982). (10.1113/jphysiol.1982.sp014296) / J. Physiol. (Lond.) by B Neumcke (1982)
  46. Baranauskas, G. & Martina, M. Sodium currents activate without a Hodgkin-and-Huxley-type delay in central mammalian neurons. J. Neurosci. 26, 671–684 (2006). (10.1523/JNEUROSCI.2283-05.2006) / J. Neurosci. by G Baranauskas (2006)
  47. Taddese, A. & Bean, B.P. Subthreshold sodium current from rapidly inactivating sodium channels drives spontaneous firing of tuberomammillary neurons. Neuron 33, 587–600 (2002). (10.1016/S0896-6273(02)00574-3) / Neuron by A Taddese (2002)
  48. Canavier, C.C. Sodium dynamics underlying burst firing and putative mechanisms for the regulation of the firing pattern in midbrain dopamine neurons: a computational approach. J. Comput. Neurosci. 6, 49–69 (1999). (10.1023/A:1008809000182) / J. Comput. Neurosci. by CC Canavier (1999)
  49. Akemann, W. & Knopfel, T. Interaction of Kv3 potassium channels and resurgent sodium current influences the rate of spontaneous firing of Purkinje neurons. J. Neurosci. 26, 4602–4612 (2006). (10.1523/JNEUROSCI.5204-05.2006) / J. Neurosci. by W Akemann (2006)
  50. Kole, M.H.P., Hallermann, S. & Stuart, G.J. Single Ih channels in pyramidal neuron dendrites: properties, distribution, and impact on action potential output. J. Neurosci. 26, 1677–1687 (2006). (10.1523/JNEUROSCI.3664-05.2006) / J. Neurosci. by MHP Kole (2006)
Dates
Type When
Created 17 years, 7 months ago (Jan. 20, 2008, 1:17 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 8:01 p.m.)
Indexed 1 month, 1 week ago (July 20, 2025, 12:02 a.m.)
Issued 17 years, 7 months ago (Jan. 20, 2008)
Published 17 years, 7 months ago (Jan. 20, 2008)
Published Online 17 years, 7 months ago (Jan. 20, 2008)
Published Print 17 years, 6 months ago (Feb. 1, 2008)
Funders 0

None

@article{Kole_2008, title={Action potential generation requires a high sodium channel density in the axon initial segment}, volume={11}, ISSN={1546-1726}, url={http://dx.doi.org/10.1038/nn2040}, DOI={10.1038/nn2040}, number={2}, journal={Nature Neuroscience}, publisher={Springer Science and Business Media LLC}, author={Kole, Maarten H P and Ilschner, Susanne U and Kampa, Björn M and Williams, Stephen R and Ruben, Peter C and Stuart, Greg J}, year={2008}, month=jan, pages={178–186} }