Crossref journal-article
Springer Science and Business Media LLC
Nature Neuroscience (297)
Bibliography

Martinez-Vicente, M., Talloczy, Z., Wong, E., Tang, G., Koga, H., Kaushik, S., de Vries, R., Arias, E., Harris, S., Sulzer, D., & Cuervo, A. M. (2010). Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nature Neuroscience, 13(5), 567–576.

Authors 11
  1. Marta Martinez-Vicente (first)
  2. Zsolt Talloczy (additional)
  3. Esther Wong (additional)
  4. Guomei Tang (additional)
  5. Hiroshi Koga (additional)
  6. Susmita Kaushik (additional)
  7. Rosa de Vries (additional)
  8. Esperanza Arias (additional)
  9. Spike Harris (additional)
  10. David Sulzer (additional)
  11. Ana Maria Cuervo (additional)
References 45 Referenced 732
  1. Morimoto, R.I. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev. 22, 1427–1438 (2008). (10.1101/gad.1657108) / Genes Dev. by RI Morimoto (2008)
  2. Rubinsztein, D.C. Lessons from animal models of Huntington's disease. Trends Genet. 18, 202–209 (2002). (10.1016/S0168-9525(01)02625-7) / Trends Genet. by DC Rubinsztein (2002)
  3. Sarkar, S. & Rubinsztein, D.C. Huntington's disease: degradation of mutant huntingtin by autophagy. FEBS J. 275, 4263–4270 (2008). (10.1111/j.1742-4658.2008.06562.x) / FEBS J. by S Sarkar (2008)
  4. Shibata, M. et al. Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J. Biol. Chem. 281, 14474–14485 (2006). (10.1074/jbc.M600364200) / J. Biol. Chem. by M Shibata (2006)
  5. Jeong, H. et al. Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell 137, 60–72 (2009). (10.1016/j.cell.2009.03.018) / Cell by H Jeong (2009)
  6. Iwata, A. et al. Intra-nuclear degradation of polyglutamine aggregates by the ubiquitin proteasome system. J. Biol. Chem. 284, 9796–9803 (2009). (10.1074/jbc.M809739200) / J. Biol. Chem. by A Iwata (2009)
  7. Mizushima, N., Levine, B., Cuervo, A. & Klionsky, D. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008). (10.1038/nature06639) / Nature by N Mizushima (2008)
  8. Ravikumar, B., Duden, R. & Rubinsztein, D.C. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet. 11, 1107–1117 (2002). (10.1093/hmg/11.9.1107) / Hum. Mol. Genet. by B Ravikumar (2002)
  9. Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585–595 (2004). (10.1038/ng1362) / Nat. Genet. by B Ravikumar (2004)
  10. Sarkar, S., Davies, J.E., Huang, Z., Tunnacliffe, A. & Rubinsztein, D.C. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J. Biol. Chem. 282, 5641–5652 (2007). (10.1074/jbc.M609532200) / J. Biol. Chem. by S Sarkar (2007)
  11. Kegel, K.B. et al. Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J. Neurosci. 20, 7268–7278 (2000). (10.1523/JNEUROSCI.20-19-07268.2000) / J. Neurosci. by KB Kegel (2000)
  12. Sapp, E. et al. Huntingtin localization in brains of normal and Huntington's disease patients. Ann. Neurol. 42, 604–612 (1997). (10.1002/ana.410420411) / Ann. Neurol. by E Sapp (1997)
  13. Davies, S.W. et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548 (1997). (10.1016/S0092-8674(00)80513-9) / Cell by SW Davies (1997)
  14. Nagata, E., Sawa, A., Ross, C.A. & Snyder, S.H. Autophagosome-like vacuole formation in Huntington's disease lymphoblasts. Neuroreport 15, 1325–1328 (2004). (10.1097/01.wnr.0000127073.66692.8f) / Neuroreport by E Nagata (2004)
  15. Atwal, R.S. et al. Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity. Hum. Mol. Genet. 16, 2600–2615 (2007). (10.1093/hmg/ddm217) / Hum. Mol. Genet. by RS Atwal (2007)
  16. Kim, J., Huang, W.P., Stromhaug, P.E. & Klionsky, D.J. Convergence of multiple autophagy and cytoplasm to vacuole targeting components to a perivacuolar membrane compartment prior to de novo vesicle formation. J. Biol. Chem. 277, 763–773 (2002). (10.1074/jbc.M109134200) / J. Biol. Chem. by J Kim (2002)
  17. Ravikumar, B., Imarisio, S., Sarkar, S., O'Kane, C.J. & Rubinsztein, D.C. Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J. Cell Sci. 121, 1649–1660 (2008). (10.1242/jcs.025726) / J. Cell Sci. by B Ravikumar (2008)
  18. Wheeler, V.C. et al. Length-dependent gametic CAG repeat instability in the Huntington's disease knock-in mouse. Hum. Mol. Genet. 8, 115–122 (1999). (10.1093/hmg/8.1.115) / Hum. Mol. Genet. by VC Wheeler (1999)
  19. Klionsky, D.J., Cuervo, A.M. & Seglen, P.O Methods for monitoring autophagy from yeast to human. Autophagy 3, 181–206 (2007). (10.4161/auto.3678) / Autophagy by DJ Klionsky (2007)
  20. Trettel, F. et al. Dominant phenotypes produced by the HD mutation in STHdh(Q111) striatal cells. Hum. Mol. Genet. 9, 2799–2809 (2000). (10.1093/hmg/9.19.2799) / Hum. Mol. Genet. by F Trettel (2000)
  21. Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000). (10.1093/emboj/19.21.5720) / EMBO J. by Y Kabeya (2000)
  22. Marzella, L., Ahlberg, J. & Glaumann, H. Isolation of autophagic vacuoles from rat liver: morphological and biochemical characterization. J. Cell Biol. 93, 144–154 (1982). (10.1083/jcb.93.1.144) / J. Cell Biol. by L Marzella (1982)
  23. Kim, P.K., Hailey, D.W., Mullen, R.T. & Lippincott-Schwartz, J. Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc. Natl. Acad. Sci. USA 105, 20567–20574 (2008). (10.1073/pnas.0810611105) / Proc. Natl. Acad. Sci. USA by PK Kim (2008)
  24. Filimonenko, M. et al. Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J. Cell Biol. 179, 485–500 (2007). (10.1083/jcb.200702115) / J. Cell Biol. by M Filimonenko (2007)
  25. Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009). (10.1038/nature07976) / Nature by R Singh (2009)
  26. Browne, S.E., Ferrante, R.J. & Beal, M.F. Oxidative stress in Huntington's disease. Brain Pathol. 9, 147–163 (1999). (10.1111/j.1750-3639.1999.tb00216.x) / Brain Pathol. by SE Browne (1999)
  27. Larsen, K.E., Fon, E.A., Hastings, T.G., Edwards, R.H. & Sulzer, D. Methamphetamine-induced degeneration of dopaminergic neurons involves autophagy and upregulation of dopamine synthesis. J. Neurosci. 22, 8951–8960 (2002). (10.1523/JNEUROSCI.22-20-08951.2002) / J. Neurosci. by KE Larsen (2002)
  28. Rubinsztein, D.C. et al. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy 1, 11–22 (2005). (10.4161/auto.1.1.1513) / Autophagy by DC Rubinsztein (2005)
  29. Chu, C.T. et al. Autophagy in neurite injury and neurodegeneration: in vitro and in vivo models. Methods Enzymol. 453, 217–249 (2009). (10.1016/S0076-6879(08)04011-1) / Methods Enzymol. by CT Chu (2009)
  30. Wang, Y. et al. Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum. Mol. Genet. 18, 4153–4170 (2009). (10.1093/hmg/ddp367) / Hum. Mol. Genet. by Y Wang (2009)
  31. Cuervo, A.M., Stefanis, L., Fredenburg, R., Lansbury, P.T. & Sulzer, D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305, 1292–1295 (2004). (10.1126/science.1101738) / Science by AM Cuervo (2004)
  32. Stefanis, L., Larsen, K., Rideout, H., Sulzer, D. & Greene, L. Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J. Neurosci. 21, 9549–9560 (2001). (10.1523/JNEUROSCI.21-24-09549.2001) / J. Neurosci. by L Stefanis (2001)
  33. Yu, W.H. et al. Macroautophagy–a novel Beta-amyloid peptide-generating pathway activated in Alzheimer's disease. J. Cell Biol. 171, 87–98 (2005). (10.1083/jcb.200505082) / J. Cell Biol. by WH Yu (2005)
  34. Sulzer, D. et al. Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc. Natl. Acad. Sci. USA 97, 11869–11874 (2000). (10.1073/pnas.97.22.11869) / Proc. Natl. Acad. Sci. USA by D Sulzer (2000)
  35. Bae, B.I. et al. Mutant huntingtin: nuclear translocation and cytotoxicity mediated by GAPDH. Proc. Natl. Acad. Sci. USA 103, 3405–3409 (2006). (10.1073/pnas.0511316103) / Proc. Natl. Acad. Sci. USA by BI Bae (2006)
  36. Browne, S.E. Mitochondria and Huntington's disease pathogenesis: insight from genetic and chemical models. Ann. NY Acad. Sci. 1147, 358–382 (2008). (10.1196/annals.1427.018) / Ann. NY Acad. Sci. by SE Browne (2008)
  37. Wang, H., Lim, P.J., Karbowski, M. & Monteiro, M.J. Effects of overexpression of huntingtin proteins on mitochondrial integrity. Hum. Mol. Genet. 18, 737–752 (2009). (10.1093/hmg/ddn404) / Hum. Mol. Genet. by H Wang (2009)
  38. Twig, G. et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433–446 (2008). (10.1038/sj.emboj.7601963) / EMBO J. by G Twig (2008)
  39. Martin-Aparicio, E. et al. Proteasomal-dependent aggregate reversal and absence of cell death in a conditional mouse model of Huntington's disease. J. Neurosci. 21, 8772–8781 (2001). (10.1523/JNEUROSCI.21-22-08772.2001) / J. Neurosci. by E Martin-Aparicio (2001)
  40. Garfield, A.S. Derivation of primary mouse embryonic fibroblast (PMEF) cultures. Methods Mol. Biol. 633, 19–27 (2010). (10.1007/978-1-59745-019-5_2) / Methods Mol. Biol. by AS Garfield (2010)
  41. Petersen, A. et al. Expanded CAG repeats in exon 1 of the Huntington's disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration. Hum. Mol. Genet. 10, 1243–1254 (2001). (10.1093/hmg/10.12.1243) / Hum. Mol. Genet. by A Petersen (2001)
  42. Massey, A.C., Kaushik, S., Sovak, G., Kiffin, R. & Cuervo, A.M. Consequences of the selective blockage of chaperone-mediated autophagy. Proc. Natl. Acad. Sci. USA 103, 5805–5810 (2006). (10.1073/pnas.0507436103) / Proc. Natl. Acad. Sci. USA by AC Massey (2006)
  43. Klionsky, D.J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4, 151–175 (2008). (10.4161/auto.5338) / Autophagy by DJ Klionsky (2008)
  44. Ohsumi, Y., Ishikawa, T. & Kato, K. A rapid and simplified method for the preparation of lysosomal membranes from rat liver. J. Biochem. 93, 547–556 (1983). / J. Biochem. by Y Ohsumi (1983)
  45. Storrie, B. & Madden, E. Isolation of subcellular organelles. Methods Enzymol. 182, 203–225 (1990). (10.1016/0076-6879(90)82018-W) / Methods Enzymol. by B Storrie (1990)
Dates
Type When
Created 15 years, 4 months ago (April 11, 2010, 1:41 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 8:05 p.m.)
Indexed 1 hour, 1 minute ago (Aug. 28, 2025, 2:24 p.m.)
Issued 15 years, 4 months ago (April 11, 2010)
Published 15 years, 4 months ago (April 11, 2010)
Published Online 15 years, 4 months ago (April 11, 2010)
Published Print 15 years, 3 months ago (May 1, 2010)
Funders 0

None

@article{Martinez_Vicente_2010, title={Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease}, volume={13}, ISSN={1546-1726}, url={http://dx.doi.org/10.1038/nn.2528}, DOI={10.1038/nn.2528}, number={5}, journal={Nature Neuroscience}, publisher={Springer Science and Business Media LLC}, author={Martinez-Vicente, Marta and Talloczy, Zsolt and Wong, Esther and Tang, Guomei and Koga, Hiroshi and Kaushik, Susmita and de Vries, Rosa and Arias, Esperanza and Harris, Spike and Sulzer, David and Cuervo, Ana Maria}, year={2010}, month=apr, pages={567–576} }