Crossref journal-article
Springer Science and Business Media LLC
Nature Neuroscience (297)
Bibliography

Watt, A. J., Cuntz, H., Mori, M., Nusser, Z., Sjöström, P. J., & Häusser, M. (2009). Traveling waves in developing cerebellar cortex mediated by asymmetrical Purkinje cell connectivity. Nature Neuroscience, 12(4), 463–473.

Authors 6
  1. Alanna J Watt (first)
  2. Hermann Cuntz (additional)
  3. Masahiro Mori (additional)
  4. Zoltan Nusser (additional)
  5. P Jesper Sjöström (additional)
  6. Michael Häusser (additional)
References 50 Referenced 168
  1. Ivry, R. Cerebellar timing systems. Int. Rev. Neurobiol. 41, 555–573 (1997). (10.1016/S0074-7742(08)60370-0) / Int. Rev. Neurobiol. by R Ivry (1997)
  2. Chan-Palay, V. The recurrent collaterals of Purkinje cell axons: a correlated study of the rat's cerebellar cortex with electron microscopy and the Golgi method. Z. Anat. Entwicklungsgesch. 134, 200–234 (1971). (10.1007/BF00519300) / Z. Anat. Entwicklungsgesch. by V Chan-Palay (1971)
  3. Ramon y Cajal, S. Histologie du Systeme Nerveux de l'homme et des Vertebres (Maloine, Paris, 1911). / Histologie du Systeme Nerveux de l'homme et des Vertebres by S Ramon y Cajal (1911)
  4. Larramendi, L.M. & Lemkey-Johnston, N. The distribution of recurrent Purkinje collateral synapses in the mouse cerebellar cortex: an electron microscopic study. J. Comp. Neurol. 138, 451–459 (1970). (10.1002/cne.901380405) / J. Comp. Neurol. by LM Larramendi (1970)
  5. Hamori, J. & Szentagothai, J. Identification of synapses formed in the cerebellar cortex by Purkinje axon collaterals: an electron microscope study. Exp. Brain Res. 5, 118–128 (1968). (10.1007/BF00238701) / Exp. Brain Res. by J Hamori (1968)
  6. De Camilli, P., Miller, P.E., Levitt, P., Walter, U. & Greengard, P. Anatomy of cerebellar Purkinje cells in the rat determined by a specific immunohistochemical marker. Neuroscience 11, 761–817 (1984). (10.1016/0306-4522(84)90193-3) / Neuroscience by P De Camilli (1984)
  7. Orduz, D. & Llano, I. Recurrent axon collaterals underlie facilitating synapses between cerebellar Purkinje cells. Proc. Natl. Acad. Sci. USA 104, 17831–17836 (2007). (10.1073/pnas.0707489104) / Proc. Natl. Acad. Sci. USA by D Orduz (2007)
  8. Maex, R. & De Schutter, E. Oscillations in the cerebellar cortex: a prediction of their frequency bands. Prog. Brain Res. 148, 181–188 (2005). (10.1016/S0079-6123(04)48015-7) / Prog. Brain Res. by R Maex (2005)
  9. Sotelo, C. Cellular and genetic regulation of the development of the cerebellar system. Prog. Neurobiol. 72, 295–339 (2004). (10.1016/j.pneurobio.2004.03.004) / Prog. Neurobiol. by C Sotelo (2004)
  10. Gianola, S., Savio, T., Schwab, M.E. & Rossi, F. Cell-autonomous mechanisms and myelin-associated factors contribute to the development of Purkinje axon intracortical plexus in the rat cerebellum. J. Neurosci. 23, 4613–4624 (2003). (10.1523/JNEUROSCI.23-11-04613.2003) / J. Neurosci. by S Gianola (2003)
  11. Altman, J. Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer. J. Comp. Neurol. 145, 399–463 (1972). (10.1002/cne.901450402) / J. Comp. Neurol. by J Altman (1972)
  12. Feller, M.B. Spontaneous correlated activity in developing neural circuits. Neuron 22, 653–656 (1999). (10.1016/S0896-6273(00)80724-2) / Neuron by MB Feller (1999)
  13. Ben-Ari, Y. Developing networks play a similar melody. Trends Neurosci. 24, 353–360 (2001). (10.1016/S0166-2236(00)01813-0) / Trends Neurosci. by Y Ben-Ari (2001)
  14. Katz, L.C. & Shatz, C.J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996). (10.1126/science.274.5290.1133) / Science by LC Katz (1996)
  15. Sekirnjak, C., Vissel, B., Bollinger, J., Faulstich, M. & du Lac, S. Purkinje cell synapses target physiologically unique brainstem neurons. J. Neurosci. 23, 6392–6398 (2003). (10.1523/JNEUROSCI.23-15-06392.2003) / J. Neurosci. by C Sekirnjak (2003)
  16. Bali, B., Erdélyi, F., Szabó, G. & Kovacs, K.J. Visualization of stress-responsive inhibitory circuits in the GAD65-eGFP transgenic mice. Neurosci. Lett. 380, 60–65 (2005). (10.1016/j.neulet.2005.01.014) / Neurosci. Lett. by B Bali (2005)
  17. Erdélyi, F. et al. GAD65-GFP transgenic mice expressing GFP in the GABAergic nervous system. FENS Abstr. 1, A011.3 (2003). / FENS Abstr. by F Erdélyi (2003)
  18. Raman, I.M. & Bean, B.P. Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons. J. Neurosci. 17, 4517–4526 (1997). (10.1523/JNEUROSCI.17-12-04517.1997) / J. Neurosci. by IM Raman (1997)
  19. Häusser, M. & Clark, B.A. Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron 19, 665–678 (1997). (10.1016/S0896-6273(00)80379-7) / Neuron by M Häusser (1997)
  20. Mittmann, W. & Häusser, M. Linking synaptic plasticity and spike output at excitatory and inhibitory synapses onto cerebellar Purkinje cells. J. Neurosci. 27, 5559–5570 (2007). (10.1523/JNEUROSCI.5117-06.2007) / J. Neurosci. by W Mittmann (2007)
  21. Eilers, J., Plant, T.D., Marandi, N. & Konnerth, A. GABA-mediated Ca2+ signaling in developing rat cerebellar Purkinje neurones. J. Physiol. (Lond.) 536, 429–437 (2001). (10.1111/j.1469-7793.2001.0429c.xd) / J. Physiol. (Lond.) by J Eilers (2001)
  22. Vida, I., Bartos, M. & Jonas, P. Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron 49, 107–117 (2006). (10.1016/j.neuron.2005.11.036) / Neuron by I Vida (2006)
  23. Khaliq, Z.M., Gouwens, N.W. & Raman, I.M. The contribution of resurgent sodium current to high-frequency firing in Purkinje neurons: an experimental and modeling study. J. Neurosci. 23, 4899–4912 (2003). (10.1523/JNEUROSCI.23-12-04899.2003) / J. Neurosci. by ZM Khaliq (2003)
  24. Firth, S.I., Wang, C.T. & Feller, M.B. Retinal waves: mechanisms and function in visual system development. Cell Calcium 37, 425–432 (2005). (10.1016/j.ceca.2005.01.010) / Cell Calcium by SI Firth (2005)
  25. Yanik, M.F. et al. Neurosurgery: functional regeneration after laser axotomy. Nature 432, 822 (2004). (10.1038/432822a) / Nature by MF Yanik (2004)
  26. Mejia-Gervacio, S. et al. Axonal speeding: shaping synaptic potentials in small neurons by the axonal membrane compartment. Neuron 53, 843–855 (2007). (10.1016/j.neuron.2007.02.023) / Neuron by S Mejia-Gervacio (2007)
  27. O'Donoghue, D.L., King, J.S. & Bishop, G.A. Physiological and anatomical studies of the interactions between Purkinje cells and basket cells in the cat's cerebellar cortex: evidence for a unitary relationship. J. Neurosci. 9, 2141–2150 (1989). (10.1523/JNEUROSCI.09-06-02141.1989) / J. Neurosci. by DL O'Donoghue (1989)
  28. Brody, C.D. Correlations without synchrony. Neural Comput. 11, 1537–1551 (1999). (10.1162/089976699300016133) / Neural Comput. by CD Brody (1999)
  29. de la Rocha, J., Doiron, B., Shea-Brown, E., Josic, K. & Reyes, A. Correlation between neural spike trains increases with firing rate. Nature 448, 802–806 (2007). (10.1038/nature06028) / Nature by J de la Rocha (2007)
  30. Hawkes, R. & Leclerc, N. Purkinje cell axon collateral distributions reflect the chemical compartmentation of the rat cerebellar cortex. Brain Res. 476, 279–290 (1989). (10.1016/0006-8993(89)91248-1) / Brain Res. by R Hawkes (1989)
  31. Song, S., Sjöstrom, P.J., Reigl, M., Nelson, S. & Chklovskii, D.B. Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 3, e68 (2005). (10.1371/journal.pbio.0030068) / PLoS Biol. by S Song (2005)
  32. Pedroarena, C.M. & Schwarz, C. Efficacy and short-term plasticity at GABAergic synapses between Purkinje and cerebellar nuclei neurons. J. Neurophysiol. 89, 704–715 (2003). (10.1152/jn.00558.2002) / J. Neurophysiol. by CM Pedroarena (2003)
  33. Telgkamp, P. & Raman, I.M. Depression of inhibitory synaptic transmission between Purkinje cells and neurons of the cerebellar nuclei. J. Neurosci. 22, 8447–8457 (2002). (10.1523/JNEUROSCI.22-19-08447.2002) / J. Neurosci. by P Telgkamp (2002)
  34. Midtgaard, J. Stellate cell inhibition of Purkinje cells in the turtle cerebellum in vitro. J. Physiol. (Lond.) 457, 355–367 (1992). (10.1113/jphysiol.1992.sp019382) / J. Physiol. (Lond.) by J Midtgaard (1992)
  35. Pouzat, C. & Hestrin, S. Developmental regulation of basket/stellate cell → Purkinje cell synapses in the cerebellum. J. Neurosci. 17, 9104–9112 (1997). (10.1523/JNEUROSCI.17-23-09104.1997) / J. Neurosci. by C Pouzat (1997)
  36. Reyes, A. & Sakmann, B. Developmental switch in the short-term modification of unitary EPSPs evoked in layer 2/3 and layer 5 pyramidal neurons of rat neocortex. J. Neurosci. 19, 3827–3835 (1999). (10.1523/JNEUROSCI.19-10-03827.1999) / J. Neurosci. by A Reyes (1999)
  37. Ben-Ari, Y. Excitatory actions of gaba during development: the nature of the nurture. Nat. Rev. Neurosci. 3, 728–739 (2002). (10.1038/nrn920) / Nat. Rev. Neurosci. by Y Ben-Ari (2002)
  38. Douglas, R.J. & Martin, K.A. Recurrent neuronal circuits in the neocortex. Curr. Biol. 17, R496–R500 (2007). (10.1016/j.cub.2007.04.024) / Curr. Biol. by RJ Douglas (2007)
  39. Connors, B.W. & Telfeian, A.E. Dynamic properties of cells, synapses, circuits and seizures in neocortex. Adv. Neurol. 84, 141–152 (2000). / Adv. Neurol. by BW Connors (2000)
  40. Cohen, A.H. et al. Modelling of intersegmental coordination in the lamprey central pattern generator for locomotion. Trends Neurosci. 15, 434–438 (1992). (10.1016/0166-2236(92)90006-T) / Trends Neurosci. by AH Cohen (1992)
  41. de Solages, C. et al. High-frequency organization and synchrony of activity in the purkinje cell layer of the cerebellum. Neuron 58, 775–788 (2008). (10.1016/j.neuron.2008.05.008) / Neuron by C de Solages (2008)
  42. Geisler, C., Brunel, N. & Wang, X.J. Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges. J. Neurophysiol. 94, 4344–4361 (2005). (10.1152/jn.00510.2004) / J. Neurophysiol. by C Geisler (2005)
  43. Lee, S.H., Blake, R. & Heeger, D.J. Traveling waves of activity in primary visual cortex during binocular rivalry. Nat. Neurosci. 8, 22–23 (2005). (10.1038/nn1365) / Nat. Neurosci. by SH Lee (2005)
  44. De Zeeuw, C.I., Hoebeek, F.E. & Schonewille, M. Causes and consequences of oscillations in the cerebellar cortex. Neuron 58, 655–658 (2008). (10.1016/j.neuron.2008.05.019) / Neuron by CI De Zeeuw (2008)
  45. Young, J.M. et al. Cortical reorganization consistent with spike timing, but not correlation, dependent plasticity. Nat. Neurosci. 10, 887–895 (2007). (10.1038/nn1913) / Nat. Neurosci. by JM Young (2007)
  46. Kerschensteiner, D. & Wong, R.O. A precisely timed asynchronous pattern of ON and OFF retinal ganglion cell activity during propagation of retinal waves. Neuron 58, 851–858 (2008). (10.1016/j.neuron.2008.04.025) / Neuron by D Kerschensteiner (2008)
  47. Braitenberg, V. Functional interpretation of cerebellar histology. Nature 190, 539–540 (1961). (10.1038/190539b0) / Nature by V Braitenberg (1961)
  48. Eccles, J.C., Szentagothai, J. & Ito, M. The Cerebellum as a Neuronal Machine (Springer-Verlag, Heidelberg, 1967). (10.1007/978-3-662-13147-3) / The Cerebellum as a Neuronal Machine by JC Eccles (1967)
  49. Oberdick, J., Baader, S.L. & Schilling, K. From zebra stripes to postal zones: deciphering patterns of gene expression in the cerebellum. Trends Neurosci. 21, 383–390 (1998). (10.1016/S0166-2236(98)01325-3) / Trends Neurosci. by J Oberdick (1998)
  50. Rall, W. Theoretical significance of dendritic trees for neuronal input-output relations. in Neural Theory and Modeling (ed. Reiss, R.F. 73–97 (Stanford University Press, Stanford, California, USA, 1964). / Neural Theory and Modeling by W Rall (1964)
Dates
Type When
Created 16 years, 5 months ago (March 15, 2009, 2:28 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 8:03 p.m.)
Indexed 5 hours, 18 minutes ago (Sept. 3, 2025, 6:24 a.m.)
Issued 16 years, 5 months ago (March 15, 2009)
Published 16 years, 5 months ago (March 15, 2009)
Published Online 16 years, 5 months ago (March 15, 2009)
Published Print 16 years, 5 months ago (April 1, 2009)
Funders 0

None

@article{Watt_2009, title={Traveling waves in developing cerebellar cortex mediated by asymmetrical Purkinje cell connectivity}, volume={12}, ISSN={1546-1726}, url={http://dx.doi.org/10.1038/nn.2285}, DOI={10.1038/nn.2285}, number={4}, journal={Nature Neuroscience}, publisher={Springer Science and Business Media LLC}, author={Watt, Alanna J and Cuntz, Hermann and Mori, Masahiro and Nusser, Zoltan and Sjöström, P Jesper and Häusser, Michael}, year={2009}, month=mar, pages={463–473} }