Crossref journal-article
Springer Science and Business Media LLC
Nature Methods (297)
Bibliography

Kasinathan, S., Orsi, G. A., Zentner, G. E., Ahmad, K., & Henikoff, S. (2013). High-resolution mapping of transcription factor binding sites on native chromatin. Nature Methods, 11(2), 203–209.

Authors 5
  1. Sivakanthan Kasinathan (first)
  2. Guillermo A Orsi (additional)
  3. Gabriel E Zentner (additional)
  4. Kami Ahmad (additional)
  5. Steven Henikoff (additional)
References 63 Referenced 174
  1. Solomon, M.J. & Varshavsky, A. Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc. Natl. Acad. Sci. USA 82, 6470–6474 (1985). (10.1073/pnas.82.19.6470) / Proc. Natl. Acad. Sci. USA by MJ Solomon (1985)
  2. Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309 (2000). (10.1126/science.290.5500.2306) / Science by B Ren (2000)
  3. Johnson, D.S., Mortazavi, A., Myers, R.M. & Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502 (2007). (10.1126/science.1141319) / Science by DS Johnson (2007)
  4. Zentner, G.E. & Henikoff, S. Surveying the epigenomic landscape, one base at a time. Genome Biol. 13, 250 (2012). (10.1186/gb4051) / Genome Biol. by GE Zentner (2012)
  5. O'Neill, L.P. & Turner, B.M. Immunoprecipitation of native chromatin: NChIP. Methods 31, 76–82 (2003). (10.1016/S1046-2023(03)00090-2) / Methods by LP O'Neill (2003)
  6. Teytelman, L. et al. Impact of chromatin structures on DNA processing for genomic analyses. PLoS ONE 4, e6700 (2009). (10.1371/journal.pone.0006700) / PLoS ONE by L Teytelman (2009)
  7. Fan, X. & Struhl, K. Where does mediator bind in vivo? PLoS ONE 4, e5029 (2009). (10.1371/journal.pone.0005029) / PLoS ONE by X Fan (2009)
  8. Schwartz, Y.B., Kahn, T.G. & Pirrotta, V. Characteristic low density and shear sensitivity of cross-linked chromatin containing polycomb complexes. Mol. Cell Biol. 25, 432–439 (2005). (10.1128/MCB.25.1.432-439.2005) / Mol. Cell Biol. by YB Schwartz (2005)
  9. Auerbach, R.K. et al. Mapping accessible chromatin regions using Sono-Seq. Proc. Natl. Acad. Sci. USA 106, 14926–14931 (2009). (10.1073/pnas.0905443106) / Proc. Natl. Acad. Sci. USA by RK Auerbach (2009)
  10. Teytelman, L., Thurtle, D.M., Rine, J. & van Oudenaarden, A. Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins. Proc. Natl. Acad. Sci. USA 110, 18602–18607 (2013). (10.1073/pnas.1316064110) / Proc. Natl. Acad. Sci. USA by L Teytelman (2013)
  11. Toth, J. & Biggin, M.D. The specificity of protein-DNA crosslinking by formaldehyde: in vitro and in Drosophila embryos. Nucleic Acids Res. 28, e4 (2000). (10.1093/nar/28.2.e4) / Nucleic Acids Res. by J Toth (2000)
  12. Jackson, V. Formaldehyde cross-linking for studying nucleosomal dynamics. Methods 17, 125–139 (1999). (10.1006/meth.1998.0724) / Methods by V Jackson (1999)
  13. Poorey, K. et al. Measuring chromatin interaction dynamics on the second time scale at single-copy genes. Science 342, 369–372 (2013). (10.1126/science.1242369) / Science by K Poorey (2013)
  14. Rhee, H.S. & Pugh, B.F. Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell 147, 1408–1419 (2011). (10.1016/j.cell.2011.11.013) / Cell by HS Rhee (2011)
  15. Gilfillan, G.D. et al. Limitations and possibilities of low cell number ChIP-seq. BMC Genomics 13, 645 (2012). (10.1186/1471-2164-13-645) / BMC Genomics by GD Gilfillan (2012)
  16. Roca, H. & Franceschi, R.T. Analysis of transcription factor interactions in osteoblasts using competitive chromatin immunoprecipitation. Nucleic Acids Res. 36, 1723–1730 (2008). (10.1093/nar/gkn022) / Nucleic Acids Res. by H Roca (2008)
  17. Teves, S.S. & Henikoff, S. Heat shock reduces stalled RNA polymerase II and nucleosome turnover genome-wide. Genes Dev. 25, 2387–2397 (2011). (10.1101/gad.177675.111) / Genes Dev. by SS Teves (2011)
  18. O'Neill, L.P. & Turner, B.M. Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-dependent but transcription-independent manner. EMBO J. 14, 3946–3957 (1995). (10.1002/j.1460-2075.1995.tb00066.x) / EMBO J. by LP O'Neill (1995)
  19. Zentner, G.E., Tsukiyama, T. & Henikoff, S. ISWI and CHD chromatin remodelers bind promoters but act in gene bodies. PLoS Genet. 9, e1003317 (2013). (10.1371/journal.pgen.1003317) / PLoS Genet. by GE Zentner (2013)
  20. Henikoff, J.G., Belsky, J.A., Krassovsky, K., MacAlpine, D.M. & Henikoff, S. Epigenome characterization at single base-pair resolution. Proc. Natl. Acad. Sci. USA 108, 18318–18323 (2011). (10.1073/pnas.1110731108) / Proc. Natl. Acad. Sci. USA by JG Henikoff (2011)
  21. MacIsaac, K.D. et al. An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7, 113 (2006). (10.1186/1471-2105-7-113) / BMC Bioinformatics by KD MacIsaac (2006)
  22. Bailey, T.L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994). / Proc. Int. Conf. Intell. Syst. Mol. Biol. by TL Bailey (1994)
  23. Beinoraviciūte-Kellner, R., Lipps, G. & Krauss, G. In vitro selection of DNA binding sites for ABF1 protein from Saccharomyces cerevisiae. FEBS Lett. 579, 4535–4540 (2005). (10.1016/j.febslet.2005.07.009) / FEBS Lett. by R Beinoraviciūte-Kellner (2005)
  24. Hartley, P.D. & Madhani, H.D. Mechanisms that specify promoter nucleosome location and identity. Cell 137, 445–458 (2009). (10.1016/j.cell.2009.02.043) / Cell by PD Hartley (2009)
  25. Ju, Q.D., Morrow, B.E. & Warner, J.R. REB1, a yeast DNA-binding protein with many targets, is essential for growth and bears some resemblance to the oncogene myb. Mol. Cell Biol. 10, 5226–5234 (1990). (10.1128/MCB.10.10.5226) / Mol. Cell Biol. by QD Ju (1990)
  26. Cho, G., Kim, J., Rho, H.M. & Jung, G. Structure-function analysis of the DNA binding domain of Saccharomyces cerevisiae ABF1. Nucleic Acids Res. 23, 2980–2987 (1995). (10.1093/nar/23.15.2980) / Nucleic Acids Res. by G Cho (1995)
  27. Hesselberth, J.R. et al. Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Nat. Methods 6, 283–289 (2009). (10.1038/nmeth.1313) / Nat. Methods by JR Hesselberth (2009)
  28. Galas, D.J. & Schmitz, A. DNAse footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res. 5, 3157–3170 (1978). (10.1093/nar/5.9.3157) / Nucleic Acids Res. by DJ Galas (1978)
  29. Neph, S. et al. An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 489, 83–90 (2012). (10.1038/nature11212) / Nature by S Neph (2012)
  30. Stormo, G.D. DNA binding sites: representation and discovery. Bioinformatics 16, 16–23 (2000). (10.1093/bioinformatics/16.1.16) / Bioinformatics by GD Stormo (2000)
  31. Blanchette, M. & Tompa, M. Discovery of regulatory elements by a computational method for phylogenetic footprinting. Genome Res. 12, 739–748 (2002). (10.1101/gr.6902) / Genome Res. by M Blanchette (2002)
  32. Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 (2005). (10.1101/gr.3715005) / Genome Res. by A Siepel (2005)
  33. Ganapathi, M. et al. Extensive role of the general regulatory factors, Abf1 and Rap1, in determining genome-wide chromatin structure in budding yeast. Nucleic Acids Res. 39, 2032–2044 (2011). (10.1093/nar/gkq1161) / Nucleic Acids Res. by M Ganapathi (2011)
  34. Harbison, C.T. et al. Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004). (10.1038/nature02800) / Nature by CT Harbison (2004)
  35. Henikoff, S., Henikoff, J.G., Sakai, A., Loeb, G.B. & Ahmad, K. Genome-wide profiling of salt fractions maps physical properties of chromatin. Genome Res. 19, 460–469 (2009). (10.1101/gr.087619.108) / Genome Res. by S Henikoff (2009)
  36. Schwendemann, A. & Lehmann, M. Pipsqueak and GAGA factor act in concert as partners at homeotic and many other loci. Proc. Natl. Acad. Sci. USA 99, 12883–12888 (2002). (10.1073/pnas.202341499) / Proc. Natl. Acad. Sci. USA by A Schwendemann (2002)
  37. The modENCODE Consortium et al. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330, 1787–1797 (2010).
  38. Moorman, C. et al. Hotspots of transcription factor colocalization in the genome of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 103, 12027–12032 (2006). (10.1073/pnas.0605003103) / Proc. Natl. Acad. Sci. USA by C Moorman (2006)
  39. Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y. & Greenleaf, W.J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10.1038/nmeth.2688 (2013). (10.1038/nmeth.2688)
  40. Lohman, T.M. & Mascotti, D.P. Thermodynamics of ligand-nucleic acid interactions. Methods Enzymol. 212, 400–424 (1992). (10.1016/0076-6879(92)12026-M) / Methods Enzymol. by TM Lohman (1992)
  41. Hager, G.L., McNally, J.G. & Misteli, T. Transcription dynamics. Mol. Cell 35, 741–753 (2009). (10.1016/j.molcel.2009.09.005) / Mol. Cell by GL Hager (2009)
  42. Wilkins, R.C. & Lis, J.T. GAGA factor binding to DNA via a single trinucleotide sequence element. Nucleic Acids Res. 26, 2672–2678 (1998). (10.1093/nar/26.11.2672) / Nucleic Acids Res. by RC Wilkins (1998)
  43. Soeller, W.C., Oh, C.E. & Kornberg, T.B. Isolation of cDNAs encoding the Drosophila GAGA transcription factor. Mol. Cell Biol. 13, 7961–7970 (1993). (10.1128/MCB.13.12.7961) / Mol. Cell Biol. by WC Soeller (1993)
  44. Zhao, X., Muller, E.G. & Rothstein, R. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol. Cell 2, 329–340 (1998). (10.1016/S1097-2765(00)80277-4) / Mol. Cell by X Zhao (1998)
  45. Gelbart, M.E., Rechsteiner, T., Richmond, T.J. & Tsukiyama, T. Interactions of Isw2 chromatin remodeling complex with nucleosomal arrays: analyses using recombinant yeast histones and immobilized templates. Mol. Cell Biol. 21, 2098–2106 (2001). (10.1128/MCB.21.6.2098-2106.2001) / Mol. Cell Biol. by ME Gelbart (2001)
  46. Furuyama, S. & Biggins, S. Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc. Natl. Acad. Sci. USA 104, 14706–14711 (2007). (10.1073/pnas.0706985104) / Proc. Natl. Acad. Sci. USA by S Furuyama (2007)
  47. Melnikova, L. et al. Interaction between the GAGA factor and Mod(mdg4) proteins promotes insulator bypass in Drosophila. Proc. Natl. Acad. Sci. USA 101, 14806–14811 (2004). (10.1073/pnas.0403959101) / Proc. Natl. Acad. Sci. USA by L Melnikova (2004)
  48. Horowitz, H. & Berg, C.A. The Drosophila pipsqueak gene encodes a nuclear BTB-domain-containing protein required early in oogenesis. Development 122, 1859–1871 (1996). (10.1242/dev.122.6.1859) / Development by H Horowitz (1996)
  49. Weber, C.M., Henikoff, J.G. & Henikoff, S. H2A.Z nucleosomes enriched over active genes are homotypic. Nat. Struct. Mol. Biol. 17, 1500–1507 (2010). (10.1038/nsmb.1926) / Nat. Struct. Mol. Biol. by CM Weber (2010)
  50. Stamatoyannopoulos, J.A. What does our genome encode? Genome Res. 22, 1602–1611 (2012). (10.1101/gr.146506.112) / Genome Res. by JA Stamatoyannopoulos (2012)
  51. Quinlan, A.R. & Hall, I.M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010). (10.1093/bioinformatics/btq033) / Bioinformatics by AR Quinlan (2010)
  52. Machanick, P. & Bailey, T.L. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics 27, 1696–1697 (2011). (10.1093/bioinformatics/btr189) / Bioinformatics by P Machanick (2011)
  53. Zhu, L.J. et al. FlyFactorSurvey: a database of Drosophila transcription factor binding specificities determined using the bacterial one-hybrid system. Nucleic Acids Res. 39, D111–D117 (2011). (10.1093/nar/gkq858) / Nucleic Acids Res. by LJ Zhu (2011)
  54. Spivak, A.T. & Stormo, G.D. ScerTF: a comprehensive database of benchmarked position weight matrices for Saccharomyces species. Nucleic Acids Res. 40, D162–D168 (2012). (10.1093/nar/gkr1180) / Nucleic Acids Res. by AT Spivak (2012)
  55. Bryne, J.C. et al. JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res. 36, D102–D106 (2008). (10.1093/nar/gkm955) / Nucleic Acids Res. by JC Bryne (2008)
  56. Morrow, B.E., Ju, Q. & Warner, J.R. A bipartite DNA-binding domain in yeast Reb1p. Mol. Cell Biol. 13, 1173–1182 (1993). (10.1128/MCB.13.2.1173) / Mol. Cell Biol. by BE Morrow (1993)
  57. Lang, W.H. & Reeder, R.H. The REB1 site is an essential component of a terminator for RNA polymerase I in Saccharomyces cerevisiae. Mol. Cell Biol. 13, 649–658 (1993). (10.1128/MCB.13.1.649) / Mol. Cell Biol. by WH Lang (1993)
  58. Kharchenko, P.V. et al. Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 471, 480–485 (2011). (10.1038/nature09725) / Nature by PV Kharchenko (2011)
  59. Meyer, L.R. et al. The UCSC Genome Browser database: extensions and updates 2013. Nucleic Acids Res. 41, D64–D69 (2013). (10.1093/nar/gks1048) / Nucleic Acids Res. by LR Meyer (2013)
  60. Cherry, J.M. et al. Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res. 40, D700–D705 (2012). (10.1093/nar/gkr1029) / Nucleic Acids Res. by JM Cherry (2012)
  61. Sherman, F. Getting started with yeast. Methods Enzymol. 350, 3–41 (2002). (10.1016/S0076-6879(02)50954-X) / Methods Enzymol. by F Sherman (2002)
  62. Landt, S.G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012). (10.1101/gr.136184.111) / Genome Res. by SG Landt (2012)
  63. Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). (10.1038/nmeth.2089) / Nat. Methods by CA Schneider (2012)
Dates
Type When
Created 11 years, 8 months ago (Dec. 15, 2013, 3:47 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 7:13 p.m.)
Indexed 4 days, 11 hours ago (Aug. 30, 2025, 12:29 p.m.)
Issued 11 years, 8 months ago (Dec. 15, 2013)
Published 11 years, 8 months ago (Dec. 15, 2013)
Published Online 11 years, 8 months ago (Dec. 15, 2013)
Published Print 11 years, 7 months ago (Feb. 1, 2014)
Funders 0

None

@article{Kasinathan_2013, title={High-resolution mapping of transcription factor binding sites on native chromatin}, volume={11}, ISSN={1548-7105}, url={http://dx.doi.org/10.1038/nmeth.2766}, DOI={10.1038/nmeth.2766}, number={2}, journal={Nature Methods}, publisher={Springer Science and Business Media LLC}, author={Kasinathan, Sivakanthan and Orsi, Guillermo A and Zentner, Gabriel E and Ahmad, Kami and Henikoff, Steven}, year={2013}, month=dec, pages={203–209} }