Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Yu, H., Li, J., Loomis, R. A., Wang, L.-W., & Buhro, W. E. (2003). Two- versus three-dimensional quantum confinement in indium phosphide wires and dots. Nature Materials, 2(8), 517–520.

Authors 5
  1. Heng Yu (first)
  2. Jingbo Li (additional)
  3. Richard A. Loomis (additional)
  4. Lin-Wang Wang (additional)
  5. William E. Buhro (additional)
References 30 Referenced 350
  1. Yoffe, A.D. Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv. Phys. 42, 173–266 (1993). (10.1080/00018739300101484) / Adv. Phys. by AD Yoffe (1993)
  2. Efros, A.L. & Rosen, M. The electronic structure of semiconductor nanocrystals. Annu. Rev. Mater. Sci. 30, 475–521 (2000). (10.1146/annurev.matsci.30.1.475) / Annu. Rev. Mater. Sci. by AL Efros (2000)
  3. Yoffe, A.D. Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Adv. Phys. 50, 1–208 (2001). (10.1080/00018730010006608) / Adv. Phys. by AD Yoffe (2001)
  4. Mícíc, O.I., Sprague, J., Lu, Z. & Nozik, A.J. Highly efficient band-edge emission from InP quantum dots. Appl. Phys. Lett. 68, 3150–3152 (1996). (10.1063/1.115807) / Appl. Phys. Lett. by OI Mícíc (1996)
  5. Mícíc, O.I., Jones, K.M., Cahill, A. & Nozik, A.J. Optical, electronic, and structural properties of uncoupled and close-packed arrays of InP quantum dots. J. Phys. Chem. B 102, 9791–9796 (1998). (10.1021/jp981703u) / J. Phys. Chem. B by OI Mícíc (1998)
  6. Mícíc, O.I., Ahrenkiel, S.P. & Nozik, A.J. Synthesis of extremely small InP quantum dots and electronic coupling in their disordered solid films. Appl. Phys. Lett. 78, 4022–4024 (2001). (10.1063/1.1379990) / Appl. Phys. Lett. by OI Mícíc (2001)
  7. Guzelian, A.A. et al. Synthesis of size-selected, surface-passivated InP nanocrystals. J. Phys. Chem. 100, 7212–7219 (1996). (10.1021/jp953719f) / J. Phys. Chem. by AA Guzelian (1996)
  8. Hasen, J. et al. Metamorphosis of a quantum wire into quantum dots. Nature 390, 54–57 (1997). (10.1038/36299) / Nature by J Hasen (1997)
  9. Dingle, R. Confined carrier quantum states in ultrathin semiconductor heterostructures. Festkörperprobleme XV, 21–48 (1975). (10.1007/BFb0107373) / Festkörperprobleme by R Dingle (1975)
  10. Harper, P.G. & Hilder, J.A. Exciton spectra in thin crystals. Phys. Status Solidi 26, 69–76 (1968). (10.1002/pssb.19680260104) / Phys. Status Solidi by PG Harper (1968)
  11. Gudiksen, M.S., Wang, J. & Lieber, C.M. Size-dependent photoluminescence from single indium phosphide nanowires. J. Phys. Chem. B 106, 4036–4039 (2002). (10.1021/jp014392n) / J. Phys. Chem. B by MS Gudiksen (2002)
  12. Nanda, K.K., Kruis, F.E. & Fissan, H. Energy levels in embedded semiconductor nanoparticles and nanowires. Nano Lett. 1, 605–611 (2001). (10.1021/nl0100318) / Nano Lett. by KK Nanda (2001)
  13. Brus, L.E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984). (10.1063/1.447218) / J. Chem. Phys. by LE Brus (1984)
  14. D'Andrea, A. & Del Sole, R. Excitons in semiconductor confined systems. Solid State Commun. 74, 1121–1124 (1990). (10.1016/0038-1098(90)90723-O) / Solid State Commun. by A D'Andrea (1990)
  15. Lefebvre, P., Christol, P. & Mathieu, H. Unified formulation of excitonic absorption spectra of semiconductor quantum wells, superlattices, and quantum wires. Phys. Rev. B 48, 17308–17315 (1993). (10.1103/PhysRevB.48.17308) / Phys. Rev. B by P Lefebvre (1993)
  16. Lefebvre, P., Christol, P., Mathieu, H. & Glutsch, S. Confined excitons in semiconductors: Correlation between binding energy and spectral absorption shape. Phys. Rev. B 52, 5756–5759 (1995). (10.1103/PhysRevB.52.5756) / Phys. Rev. B by P Lefebvre (1995)
  17. Li, L.-s., Hu, J., Yang, W. & Alivisatos, A.P. Band gap variation of size- and shape-controlled colloidal CdSe and quantum rods. Nano Lett. 1, 349–351 (2001). (10.1021/nl015559r) / Nano Lett. by L-s Li (2001)
  18. Kan, S., Mokari, T., Rothenberg, E. & Banin, U. Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods. Nature Mater. 2, 155–158 (2003). (10.1038/nmat830) / Nature Mater. by S Kan (2003)
  19. Tang, Z., Kotov, N.A. & Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297, 237–240 (2002). (10.1126/science.1072086) / Science by Z Tang (2002)
  20. Holmes, J.D., Johnston, K.P., Doty, R.C. & Korgel, B.A. Control of thickness and orientation of solution-grown silicon nanowires. Science 287, 1471–1473 (2000). (10.1126/science.287.5457.1471) / Science by JD Holmes (2000)
  21. Trentler, T.J. et al. Solution-liquid-solid growth of indium phosphide fibers from organometallic precursors; elucidation of molecular and nonmolecular components of the pathway. J. Am. Chem. Soc. 119, 2172–2181 (1997). (10.1021/ja9640859) / J. Am. Chem. Soc. by TJ Trentler (1997)
  22. Trentler, T.J. et al. Solution-liquid-solid growth of crystalline III-V semiconductors; an analogy to vapor-liquid-solid growth. Science 270, 1791–1794 (1995). (10.1126/science.270.5243.1791) / Science by TJ Trentler (1995)
  23. Markowitz, P.D., Zach, M.P., Gibbons, P.C., Penner, R.M. & Buhro, W.E. Phase separation in AlxGa1-xAs nanowhiskers grown by the solution-liquid-solid mechanism. J. Am. Chem. Soc. 123, 4502–4511 (2001). (10.1021/ja0025907) / J. Am. Chem. Soc. by PD Markowitz (2001)
  24. Gudiksen, M.S., Wang, J. & Lieber, C.M. Synthetic control of the diameter and length of single crystal semiconductor nanowires. J. Phys. Chem. B 105, 4062–4064 (2001). (10.1021/jp010540y) / J. Phys. Chem. B by MS Gudiksen (2001)
  25. Wu, Y. & Yang, P. Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 123, 3165–3166 (2001). (10.1021/ja0059084) / J. Am. Chem. Soc. by Y Wu (2001)
  26. Yu, H., Gibbons, P.C., Kelton, K.F. & Buhro, W.E. Heterogeneous seeded growth: a potentially general synthesis of monodisperse metallic nanoparticles. J. Am. Chem. Soc. 123, 9198–9199 (2001). (10.1021/ja016529t) / J. Am. Chem. Soc. by H Yu (2001)
  27. Yu, H. & Buhro, W.E. Solution-liquid-solid growth of soluble GaAs nanowires. Adv. Mater. 2003, 416–419 (2003). (10.1002/adma.200390096) / Adv. Mater. by H Yu (2003)
  28. Stuczynksi, S.M., Opila, R.L., Marsh, P., Brennan, J.G. & Steigerwald, M.L. Formation of indium phosphide from trimethylindium (In(CH3)3) and tris(trimethylsilyl)phosphine (P(Si(CH3)3)3). Chem. Mater. 3, 379–381 (1991). (10.1021/cm00015a001) / Chem. Mater. by SM Stuczynksi (1991)
  29. Wang, L.-W. & Zunger, A. Solving Schrödinger's equation around a desired energy: Application to silicon quantum dots. J. Chem. Phys. 100, 2394–2397 (1994). (10.1063/1.466486) / J. Chem. Phys. by L-W Wang (1994)
  30. Fu, H. & Zunger, A. InP quantum dots: Electronic structure, surface effects, and the redshifted emission. Phys. Rev. B 56, 1496–1508 (1997). (10.1103/PhysRevB.56.1496) / Phys. Rev. B by H Fu (1997)
Dates
Type When
Created 22 years, 1 month ago (July 18, 2003, 9:52 a.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 3:10 p.m.)
Indexed 2 months, 1 week ago (June 14, 2025, 11:10 a.m.)
Issued 22 years, 1 month ago (July 20, 2003)
Published 22 years, 1 month ago (July 20, 2003)
Published Online 22 years, 1 month ago (July 20, 2003)
Published Print 22 years ago (Aug. 1, 2003)
Funders 0

None

@article{Yu_2003, title={Two- versus three-dimensional quantum confinement in indium phosphide wires and dots}, volume={2}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat942}, DOI={10.1038/nmat942}, number={8}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Yu, Heng and Li, Jingbo and Loomis, Richard A. and Wang, Lin-Wang and Buhro, William E.}, year={2003}, month=jul, pages={517–520} }