Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Warner, M. G., & Hutchison, J. E. (2003). Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds. Nature Materials, 2(4), 272–277.

Authors 2
  1. Marvin G. Warner (first)
  2. James E. Hutchison (additional)
References 49 Referenced 353
  1. Tour, J.M. et al. Synthesis and preliminary testing of molecular wires and devices. Chem. Eur. J. 7, 5118–5134 (2001). (10.1002/1521-3765(20011203)7:23<5118::AID-CHEM5118>3.0.CO;2-1) / Chem. Eur. J. by JM Tour (2001)
  2. Matsumoto, M., Tachibana, H. & Nakamura, T. Applications of organic conductors: molecular electronics. Appl. Phys. 4, 759–790 (1994). / Appl. Phys. by M Matsumoto (1994)
  3. Sugi, M. Langmuir–Blodgett films – a course towards molecular electronics: a review. J. Mol. Electron. 1, 3–17 (1985). / J. Mol. Electron. by M Sugi (1985)
  4. Luo, Y. et al. Two-dimensional molecular electronics circuits. Chem. Phys. Chem. 3, 519–525 (2002). (10.1002/1439-7641(20020617)3:6<519::AID-CPHC519>3.0.CO;2-2) / Chem. Phys. Chem. by Y Luo (2002)
  5. Perkins, J. et al. Toward artificial molecular devices. Mol. Electron. Bioelectron. 12, 69–74 (2001). / Mol. Electron. Bioelectron. by J Perkins (2001)
  6. Heath, J.R. Nanoscale Materials. Acc. Chem. Res. 32, 388 (1999). (10.1021/ar990059e) / Acc. Chem. Res. by JR Heath (1999)
  7. Tans, S.J., Verschueren, A.R.M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998). (10.1038/29954) / Nature by SJ Tans (1998)
  8. Avouris, P., Collins, P.G. & Arnold, M.S. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292, 706–709 (2001). (10.1126/science.1058782) / Science by P Avouris (2001)
  9. Gardner, T.J., Frisbie, C.D. & Wrighton, M.S. Systems for orthogonal self-assembly of electroactive monolayers on Au and ITO: an approach to molecular electronics. J. Am. Chem. Soc. 117, 6927–6933 (1995). (10.1021/ja00131a015) / J. Am. Chem. Soc. by TJ Gardner (1995)
  10. Vijayamohanan, K. & Aslam, M. Applications of self-assembled monolayers for biomolecular electronics. Appl. Biochem. Biotech. 96, 25–39 (2001). (10.1385/ABAB:96:1-3:025) / Appl. Biochem. Biotech. by K Vijayamohanan (2001)
  11. Fan, F.-R.F. et al. Determination of the molecular electrical properties of self-assembled monolayers of compounds of interest in molecular electronics. J. Am. Chem. Soc. 123, 2454–2455 (2001). (10.1021/ja005819r) / J. Am. Chem. Soc. by F-RF Fan (2001)
  12. Collier, C.P. et al. Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999). (10.1126/science.285.5426.391) / Science by CP Collier (1999)
  13. Berven, C.A., Clarke, L., Mooster, J.L., Wybourne, M.N. & Hutchison, J.E. Defect-tolerant single-electron charging at room temperature in metal nanoparticle decorated biopolymers. Adv. Mater. 13, 109–113 (2001). (10.1002/1521-4095(200101)13:2<109::AID-ADMA109>3.0.CO;2-Y) / Adv. Mater. by CA Berven (2001)
  14. Andres, R.P. et al. Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters. Science 273, 1690–1693 (1996). (10.1126/science.273.5282.1690) / Science by RP Andres (1996)
  15. Osifchin, R.G. et al. Synthesis of a quantum dot superlattice using molecularly linked metal clusters. Superlattices Microstruct. 18, 283 (1995). (10.1006/spmi.1995.1113) / Superlattices Microstruct. by RG Osifchin (1995)
  16. Kim, S.H. et al. Tunnel diodes fabricated from CdSe nanocrystal monolayers. Appl. Phys. Lett. 74, 317–319 (1999). (10.1063/1.123035) / Appl. Phys. Lett. by SH Kim (1999)
  17. Parthasarathy, R., Lin, X.-M. & Jaeger, H.M. Electron transport in metal nanocrystal arrays: the effect of structural disorder on scaling behavior. Los Alamos Natl Lab., Prepr. Arch., Condens. Mat. 1–4 (2001) (doi:arXiv:cond-mat/0102446). (10.1103/PhysRevLett.87.186807)
  18. Warner, M.G. & Hutchison, J.E. in Synthesis, Functionalization, and Surface Treatment of Nanoparticles (ed. Baraton, M.-I.) (American Scientific, San Francisco, 2002). / Synthesis, Functionalization, and Surface Treatment of Nanoparticles by MG Warner (2002)
  19. Wyrwa, D., Beyer, N. & Schmid, G. One-dimensional arrangements of metal nanoclusters. Nano. Lett. 2, 410 (2002). (10.1021/nl0157086) / Nano. Lett. by D Wyrwa (2002)
  20. Clarke, L., Wybourne, M.N., Yan, M., Cai, S.X. & Keana, J.F.W. Transport in gold cluster structures defined by electron-beam lithography. Appl. Phys. Lett. 71, 617–619 (1997). (10.1063/1.120568) / Appl. Phys. Lett. by L Clarke (1997)
  21. Clarke, L. et al. Fabrication and near-room temperature transport of patterned gold cluster structures. J. Vac. Sci. Technol. B 15, 2925–2929 (1997). (10.1116/1.589756) / J. Vac. Sci. Technol. B by L Clarke (1997)
  22. Hutchison, J.E. Nanoscience turns green. Chem. Eng. News 79, 200 (2001). / Chem. Eng. News by JE Hutchison (2001)
  23. Mirkin, C.A., Letsinger, R.L., Mucic, R.C. & Storhoff, J.J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996). (10.1038/382607a0) / Nature by CA Mirkin (1996)
  24. Storhoff, J.J. & Mirkin, C.A. Programmed materials synthesis with DNA. Chem. Rev. 99, 1849–1862 (1999). (10.1021/cr970071p) / Chem. Rev. by JJ Storhoff (1999)
  25. Mirkin, C.A. Programming the assembly of 2 and 3D architectures with DNA and nanoscale inorganic building blocks. Inorg. Chem. 39, 2258–2272 (2000). (10.1021/ic991123r) / Inorg. Chem. by CA Mirkin (2000)
  26. McIntosh, C.M. et al. Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters. J. Am. Chem. Soc. 123, 7626–7629 (2001). (10.1021/ja015556g) / J. Am. Chem. Soc. by CM McIntosh (2001)
  27. Sandhu, K.K., McIntosh, C.M., Simard, J.M., Smith, S.W. & Rotello, V.M. Gold nanoparticle-mediated transfection of mammalian cells. Bioconjugate Chem. 13, 3–6 (2002). (10.1021/bc015545c) / Bioconjugate Chem. by KK Sandhu (2002)
  28. Yonezawa, T., Onoue, S.-Y. & Kunitake, T. Formation of one-dimensional arrays of gold nanoparticles with DNA. Kobunshi Ronbunshu 56, 855–859 (1999). (10.1295/koron.56.855) / Kobunshi Ronbunshu by T Yonezawa (1999)
  29. Yonezawa, T., Onoue, S.-Y. & Kunitake, T. Three-dimensional assembly of cationic gold nanoparticles and anionic organic components: DNA and a bilayer membrane. Stud. Surf. Sci. Catal. 132, 623–626 (2001). (10.1016/S0167-2991(01)82168-6) / Stud. Surf. Sci. Catal. by T Yonezawa (2001)
  30. Torimoto, T. et al. Fabrication of CdS nanoparticle chains along DNA double strands. J. Phys. Chem. B 103, 7799–8803 (1999). (10.1021/jp991781x) / J. Phys. Chem. B by T Torimoto (1999)
  31. Warner, M.G., Reed, S.M. & Hutchison, J.E. Small, water-soluble, ligand-stabilized gold nanoparticles synthesized by interfacial ligand exchange reactions. Chem. Mater. 12, 3316–3320 (2000). (10.1021/cm0003875) / Chem. Mater. by MG Warner (2000)
  32. Weare, W.W., Reed, S.M., Warner, M.G. & Hutchison, J.E. Improved synthesis of small (dCORE ≈ 1.5 nm) phosphine-stabilized gold nanoparticles. J. Am. Chem. Soc. 122, 12890–12891 (2000). (10.1021/ja002673n) / J. Am. Chem. Soc. by WW Weare (2000)
  33. Brown, L.O. & Hutchison, J.E. Convenient preparation of stable, narrow-dispersity, gold nanocrystals by ligand exchange reactions. J. Am. Chem. Soc. 119, 12384–12385 (1997). (10.1021/ja972900u) / J. Am. Chem. Soc. by LO Brown (1997)
  34. Hagerman, P.J. Flexibility of DNA. Annu. Rev. Biophys. Biomol. Struc. 17, 265–286 (1988). (10.1146/annurev.bb.17.060188.001405) / Annu. Rev. Biophys. Biomol. Struc. by PJ Hagerman (1988)
  35. Rivetti, C., Guthold, M. & Bustamante, C. Scanning force microscopy of DNA deposited onto mica: Equilibration versus kinetic trapping studied by statistical polymer chain analysis. J. Mol. Biol. 264, 919–932 (1996). (10.1006/jmbi.1996.0687) / J. Mol. Biol. by C Rivetti (1996)
  36. Rivetti, C., Walker, C. & Bustamante, C. Polymer chain statistics and conformational analysis of DNA molecules with bends or sections of different flexibility. J. Mol. Biol. 280, 41–59 (1998). (10.1006/jmbi.1998.1830) / J. Mol. Biol. by C Rivetti (1998)
  37. Sivolob, A. & Khrapunov, S.N. Electrostatic contribution to the bending of DNA. Biophys. Chem. 67, 85–96 (1997). (10.1016/S0301-4622(97)00022-7) / Biophys. Chem. by A Sivolob (1997)
  38. Olins, D.E., Olins, A.L. & von Hippel, P.H. Model nucleoprotein complexes: Studies on the interaction of cationic homopolypeptides with DNA. J. Mol. Biol. 24, 157–176 (1967). (10.1016/0022-2836(67)90324-5) / J. Mol. Biol. by DE Olins (1967)
  39. Lees, C.W. & von Hippel, P.H. Hydrogen-exchange studies of deoxyribonucleic acid-protein complexes. Development of a filtration method and application to the deoxyribonucleic acid-polylysine system. Biochemistry 7, 2480–2488 (1968). (10.1021/bi00847a006) / Biochemistry by CW Lees (1968)
  40. Matthew, J.B. & Richards, F.M. Differential electrostatic stabilization of A-, B-, and Z-forms of DNA. Biopolymers 23, 2743–2759 (1984). (10.1002/bip.360231205) / Biopolymers by JB Matthew (1984)
  41. McGhee, J.D. & Von Hippel, P.H. Theoretical aspects of DNA-protein interactions. Cooperative and noncooperative binding of large ligands to a one-dimensional homogeneous lattice. J. Mol. Biol. 86, 469–89 (1974). (10.1016/0022-2836(74)90031-X) / J. Mol. Biol. by JD McGhee (1974)
  42. Leng, M. & Felsenfeld, G. The preferential interactions of polylysine and polyarginine with specific base sequences in DNA. Proc. Natl Acad. Sci. 56, 1325–1332 (1966). (10.1073/pnas.56.4.1325) / Proc. Natl Acad. Sci. by M Leng (1966)
  43. Olins, D.E., Olins, A.L. & von Hippel, P.H. On the structure and stability of DNA-protamine and DNA-polypeptide complexes. J. Mol. Biol. 33, 265–281 (1968). (10.1016/0022-2836(68)90293-3) / J. Mol. Biol. by DE Olins (1968)
  44. Rouzina, I. & Bloomfield, V.A. Competitive electrostatic binding of charged ligands to polyelectrolytes: Planar and cylindrical geometries. J. Phys. Chem. 100, 4292–4304 (1996). (10.1021/jp9525898) / J. Phys. Chem. by I Rouzina (1996)
  45. Rouzina, I. & Bloomfield, V.A. Competitive electrostatic binding of charged ligands to polyelectrolytes: practical approach using the non-linear Poisson-Boltzmann equation. Biophys. Chem. 64, 139–155 (1997). (10.1016/S0301-4622(96)02231-4) / Biophys. Chem. by I Rouzina (1997)
  46. Kumar, A. et al. Linear superclusters of colloidal gold particles by electrostatic assembly on DNA templates. Adv. Mater. 13, 341–344 (2001). (10.1002/1521-4095(200103)13:5<341::AID-ADMA341>3.0.CO;2-X) / Adv. Mater. by A Kumar (2001)
  47. Sastry, M., Kumar, A., Datar, S., Dharmadhikari, C.V. & Ganesh, K.N. DNA-mediated electrostatic assembly of gold nanoparticles into linear arrays by a simple drop-coating procedure. Appl. Phys. Lett. 78, 2943–2945 (2001). (10.1063/1.1370993) / Appl. Phys. Lett. by M Sastry (2001)
  48. Weisbecker, C.S., Merritt, M.V. & Whitesides, G.M. Molecular self-assembly of aliphatic thiols on gold colloids. Langmuir 12, 3763–3772 (1996). (10.1021/la950776r) / Langmuir by CS Weisbecker (1996)
  49. Brown, L.O. & Hutchison, J.E. Formation and electron diffraction studies of ordered 2-D and 3-D superlattices of amine stabilized gold nanocrystals. J. Phys. Chem. B 105, 8911–8916 (2001). (10.1021/jp011231a) / J. Phys. Chem. B by LO Brown (2001)
Dates
Type When
Created 22 years, 4 months ago (March 31, 2003, 4:10 a.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 3:17 p.m.)
Indexed 3 days, 1 hour ago (Aug. 23, 2025, 12:59 a.m.)
Issued 22 years, 5 months ago (March 9, 2003)
Published 22 years, 5 months ago (March 9, 2003)
Published Online 22 years, 5 months ago (March 9, 2003)
Published Print 22 years, 4 months ago (April 1, 2003)
Funders 0

None

@article{Warner_2003, title={Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds}, volume={2}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat853}, DOI={10.1038/nmat853}, number={4}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Warner, Marvin G. and Hutchison, James E.}, year={2003}, month=mar, pages={272–277} }