Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Lee, J., Wang, Z., Xie, H., Mak, K. F., & Shan, J. (2017). Valley magnetoelectricity in single-layer MoS2. Nature Materials, 16(9), 887–891.

Authors 5
  1. Jieun Lee (first)
  2. Zefang Wang (additional)
  3. Hongchao Xie (additional)
  4. Kin Fai Mak (additional)
  5. Jie Shan (additional)
References 33 Referenced 177
  1. Manfred, F. Revival of the magnetoelectric effect. J. Phys. D 38, R123 (2005). (10.1088/0022-3727/38/8/R01) / J. Phys. D by F Manfred (2005)
  2. Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006). (10.1038/nature05023) / Nature by W Eerenstein (2006)
  3. Awschalom, D. D. & Flatte, M. E. Challenges for semiconductor spintronics. Nat. Phys. 3, 153–159 (2007). (10.1038/nphys551) / Nat. Phys. by DD Awschalom (2007)
  4. Xiao, D., Liu, G. B., Feng, W. X., Xu, X. D. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012). (10.1103/PhysRevLett.108.196802) / Phys. Rev. Lett. by D Xiao (2012)
  5. Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007). (10.1103/PhysRevLett.99.236809) / Phys. Rev. Lett. by D Xiao (2007)
  6. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014). (10.1038/nphys2942) / Nat. Phys. by X Xu (2014)
  7. Zhang, Y. J., Oka, T., Suzuki, R., Ye, J. T. & Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science 344, 725–728 (2014). (10.1126/science.1251329) / Science by YJ Zhang (2014)
  8. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014). (10.1126/science.1250140) / Science by KF Mak (2014)
  9. Gorbachev, R. V. et al. Detecting topological currents in graphene superlattices. Science 346, 448–451 (2014). (10.1126/science.1254966) / Science by RV Gorbachev (2014)
  10. Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). (10.1126/science.1258122) / Science by J Kim (2014)
  11. Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2 . Nat. Mater. 14, 290–294 (2015). (10.1038/nmat4156) / Nat. Mater. by EJ Sie (2015)
  12. Li, Y. L. et al. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2 . Phys. Rev. Lett. 113, 266804 (2014). (10.1103/PhysRevLett.113.266804) / Phys. Rev. Lett. by YL Li (2014)
  13. MacNeill, D. et al. Breaking of valley degeneracy by magnetic field in monolayer MoSe2 . Phys. Rev. Lett. 114, 037401 (2015). (10.1103/PhysRevLett.114.037401) / Phys. Rev. Lett. by D MacNeill (2015)
  14. Aivazian, G. et al. Magnetic control of valley pseudospin in monolayer WSe2 . Nat. Phys. 11, 148–152 (2015). (10.1038/nphys3201) / Nat. Phys. by G Aivazian (2015)
  15. Srivastava, A. et al. Valley Zeeman effect in elementary optical excitations of monolayer WSe2 . Nat. Phys. 11, 141–147 (2015). (10.1038/nphys3203) / Nat. Phys. by A Srivastava (2015)
  16. Ye, Y. et al. Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide. Nat. Nanotech. 11, 598–602 (2016). (10.1038/nnano.2016.49) / Nat. Nanotech. by Y Ye (2016)
  17. Lee, J., Mak, K. F. & Shan, J. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotech. 11, 421–425 (2016). (10.1038/nnano.2015.337) / Nat. Nanotech. by J Lee (2016)
  18. Cracknell, A. P. Magnetism in Crystalline Materials: Applications of the Theory of Groups of Cambiant Symmetry (Pergamon Press, 1975). / Magnetism in Crystalline Materials: Applications of the Theory of Groups of Cambiant Symmetry by AP Cracknell (1975)
  19. Levitov, L. S., Nazarov, Y. V. & Eliashberg, G. M. Magnetoelectric effects in conductors with mirror isomer symmetry. Zh. Eksp. I Teor. Fiz. 88, 229–236 (1985). / Zh. Eksp. I Teor. Fiz. by LS Levitov (1985)
  20. Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990). (10.1016/0038-1098(90)90963-C) / Solid State Commun. by VM Edelstein (1990)
  21. Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015). (10.1103/PhysRevLett.115.216806) / Phys. Rev. Lett. by I Sodemann (2015)
  22. Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nat. Phys. 5, 656–659 (2009). (10.1038/nphys1362) / Nat. Phys. by A Chernyshov (2009)
  23. Mihai Miron, I. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230–234 (2010). (10.1038/nmat2613) / Nat. Mater. by I Mihai Miron (2010)
  24. Wu, W. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014). (10.1038/nature13792) / Nature by W Wu (2014)
  25. Zhu, H. et al. Observation of piezoelectricity in free-standing monolayer MoS2 . Nat. Nanotech. 10, 151–155 (2015). (10.1038/nnano.2014.309) / Nat. Nanotech. by H Zhu (2015)
  26. He, K., Poole, C., Mak, K. F. & Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2 . Nano Lett. 13, 2931–2936 (2013). (10.1021/nl4013166) / Nano Lett. by K He (2013)
  27. Conley, H. J. et al. Bandgap engineering of strained monolayer and bilayer MoS2 . Nano Lett. 13, 3626–3630 (2013). (10.1021/nl4014748) / Nano Lett. by HJ Conley (2013)
  28. Yang, L. et al. Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2 . Nat. Phys. 11, 830–834 (2015). (10.1038/nphys3419) / Nat. Phys. by L Yang (2015)
  29. Sallen, G. et al. Robust optical emission polarization in MoS2 monolayers through selective valley excitation. Phys. Rev. B 86, 081301 (2012). (10.1103/PhysRevB.86.081301) / Phys. Rev. B by G Sallen (2012)
  30. Linnik, T. L. Effective Hamiltonian of strained graphene. J. Phys. Condens. Matter 24, 205302 (2012). (10.1088/0953-8984/24/20/205302) / J. Phys. Condens. Matter by TL Linnik (2012)
  31. Rostami, H., Roldán, R., Cappelluti, E., Asgari, R. & Guinea, F. Theory of strain in single-layer transition metal dichalcogenides. Phys. Rev. B 92, 195402 (2015). (10.1103/PhysRevB.92.195402) / Phys. Rev. B by H Rostami (2015)
  32. Liu, G. B., Shan, W. Y., Yao, Y. G., Yao, W. & Xiao, D. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 88, 085433 (2013). (10.1103/PhysRevB.88.085433) / Phys. Rev. B by GB Liu (2013)
  33. Gurvitch, M. Ioffe–Regel criterion and resistivity of metals. Phys. Rev. B 24, 7404–7407 (1981). (10.1103/PhysRevB.24.7404) / Phys. Rev. B by M Gurvitch (1981)
Dates
Type When
Created 8 years, 1 month ago (July 10, 2017, 11:03 a.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 2:46 p.m.)
Indexed 2 weeks, 1 day ago (Aug. 6, 2025, 8:24 a.m.)
Issued 8 years, 1 month ago (July 10, 2017)
Published 8 years, 1 month ago (July 10, 2017)
Published Online 8 years, 1 month ago (July 10, 2017)
Published Print 7 years, 11 months ago (Sept. 1, 2017)
Funders 0

None

@article{Lee_2017, title={Valley magnetoelectricity in single-layer MoS2}, volume={16}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat4931}, DOI={10.1038/nmat4931}, number={9}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Lee, Jieun and Wang, Zefang and Xie, Hongchao and Mak, Kin Fai and Shan, Jie}, year={2017}, month=jul, pages={887–891} }