Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Chu, S., Cui, Y., & Liu, N. (2016). The path towards sustainable energy. Nature Materials, 16(1), 16–22.

Authors 3
  1. Steven Chu (first)
  2. Yi Cui (additional)
  3. Nian Liu (additional)
References 64 Referenced 4,132
  1. International Energy Outlook 2016 (US Energy Information Administration, 2016).
  2. Butler, J. H. & Montzka, S. A. The NOAA Annual Greenhouse Gas Index (National Oceanic & Atmospheric Administration, 2016); http://go.nature.com/2fWAEjv / The NOAA Annual Greenhouse Gas Index by JH Butler (2016)
  3. Roemmich, D. et al. Unabated planetary warming and its ocean structure since 2006. Nat. Clim. Change 5, 240–245 (2015). (10.1038/nclimate2513) / Nat. Clim. Change by D Roemmich (2015)
  4. IPCC Climate Change 2014: Synthesis Report (eds Pachauri, R. K. & Meyer, L. A.) (Cambridge Univ. Press, 2015).
  5. Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). (10.1038/nature11475) / Nature by S Chu (2012)
  6. Boot-Handford, M. E. et al. Carbon capture and storage update. Energy Environ. Sci. 7, 130–189 (2014). (10.1039/C3EE42350F) / Energy Environ. Sci. by ME Boot-Handford (2014)
  7. Brédas, J.-L., Sargent, E. H. & Scholes, G. D. Photovoltaic concepts inspired by coherence effects in photosynthetic systems. Nat. Mater. 16, 35–44 (2017). (10.1038/nmat4767) / Nat. Mater. by J-L Brédas (2017)
  8. Green, M. A. & Bremner, S. P. Energy conversion approaches and materials for high-efficiency photovoltaics. Nat. Mater. 16, 23–34 (2017). (10.1038/nmat4676) / Nat. Mater. by MA Green (2017)
  9. Grey, C. P. & Tarascon, J. M. Sustainability and in situ monitoring in battery development. Nat. Mater. 16, 45–56 (2017). (10.1038/nmat4777) / Nat. Mater. by CP Grey (2017)
  10. Montoya, J. H. et al. Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2017). (10.1038/nmat4778) / Nat. Mater. by JH Montoya (2017)
  11. Stamenkovic, V. R., Strmcnik, D., Lopes, P. P. & Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2017). (10.1038/nmat4738) / Nat. Mater. by VR Stamenkovic (2017)
  12. PVX Spot Market Price Index Solar PV Modules (SolarServer, 2016); http://go.nature.com/2fHydjV
  13. Office of Energy Efficiency and Renewable Energy SunShot Vision Study (US Department of Energy, 2012); http://go.nature.com/2geV1LO
  14. Shahan, Z. Low solar prices scaring companies away from solar auctions. CleanTechnica (27 July 2016); http://go.nature.com/2fHsfPO / CleanTechnica by Z Shahan (2016)
  15. SunShot 2030 White Paper (US Department of Energy, 2016); http://go.nature.com/2g1g8xW
  16. Photovoltaics Report (Fraunhofer Institute for Solar Energy Systems, 2016); http://go.nature.com/2eusg7r
  17. Zhu, J., Hsu, C.-M., Yu, Z., Fan, S. & Cui, Y. Nanodome solar cells with efficient light management and self-cleaning. Nano Lett. 10, 1979–1984 (2010). (10.1021/nl9034237) / Nano Lett. by J Zhu (2010)
  18. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013). (10.1038/nature12340) / Nature by J Burschka (2013)
  19. Seo, J., Noh, J. H. & Seok, S. I. Rational strategies for efficient perovskite solar cells. Acc. Chem. Res. 49, 562–572 (2016). (10.1021/acs.accounts.5b00444) / Acc. Chem. Res. by J Seo (2016)
  20. Nishimoto, S. & Bhushan, B. Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Adv. 3, 671–690 (2013). (10.1039/C2RA21260A) / RSC Adv. by S Nishimoto (2013)
  21. Zhang, P. & Lv, F. Y. A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications. Energy 82, 1068–1087 (2015). (10.1016/j.energy.2015.01.061) / Energy by P Zhang (2015)
  22. Gogolides, E., Ellinas, K. & Tserepi, A. Hierarchical micro and nano structured, hydrophilic, superhydrophobic and superoleophobic surfaces incorporated in microfluidics, microarrays and lab on chip microsystems. Microelectron. Eng. 132, 135–155 (2015). (10.1016/j.mee.2014.10.002) / Microelectron. Eng. by E Gogolides (2015)
  23. EV Everywhere Grand Challenge Blueprint (US Department of Energy, 2013); http://go.nature.com/2gRubKz
  24. Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004). (10.1021/cr020731c) / Chem. Rev. by MS Whittingham (2004)
  25. Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotech. 3, 31–35 (2008). (10.1038/nnano.2007.411) / Nat. Nanotech. by CK Chan (2008)
  26. Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–6 (2009). (10.1038/nmat2460) / Nat. Mater. by X Ji (2009)
  27. Lin, D. et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotech. 11, 626–632 (2016). (10.1038/nnano.2016.32) / Nat. Nanotech. by D Lin (2016)
  28. Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–35 (2013). (10.1038/nmat3699) / Nat. Mater. by M Sathiya (2013)
  29. Li, X., Zhang, H., Mai, Z., Zhang, H. & Vankelecom, I. Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ. Sci. 4, 1147 (2011). (10.1039/c0ee00770f) / Energy Environ. Sci. by X Li (2011)
  30. Li, B. et al. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat. Commun. 6, 6303 (2015). (10.1038/ncomms7303) / Nat. Commun. by B Li (2015)
  31. Yang, Y., Zheng, G. & Cui, Y. A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage. Energy Environ. Sci. 6, 1552–1558 (2013). (10.1039/c3ee00072a) / Energy Environ. Sci. by Y Yang (2013)
  32. Kim, Y. J., Wu, W., Chun, S.-E., Whitacre, J. F. & Bettinger, C. J. Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices. Proc. Natl Acad. Sci. USA 110, 20912–7 (2013). (10.1073/pnas.1314345110) / Proc. Natl Acad. Sci. USA by YJ Kim (2013)
  33. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotech. 6, 147–150 (2011). (10.1038/nnano.2010.279) / Nat. Nanotech. by B Radisavljevic (2011)
  34. Hinnemann, B. et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005). (10.1021/ja0504690) / J. Am. Chem. Soc. by B Hinnemann (2005)
  35. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007). (10.1126/science.1141483) / Science by TF Jaramillo (2007)
  36. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007). (10.1126/science.1135941) / Science by VR Stamenkovic (2007)
  37. Chen, C. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339 LP-1343 (2014). / Science by C Chen (2014)
  38. Wang, H. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl Acad. Sci. USA 110, 19701–19706 (2013). (10.1073/pnas.1316792110) / Proc. Natl Acad. Sci. USA by H Wang (2013)
  39. Asadi, M. et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 353, 467–470 (2016). (10.1126/science.aaf4767) / Science by M Asadi (2016)
  40. Gupta, K., Bersani, M. & Darr, J. A. Highly efficient electro-reduction of CO2 to formic acid by nano-copper. J. Mater. Chem. A 4, 13786–13794 (2016). (10.1039/C6TA04874A) / J. Mater. Chem. A by K Gupta (2016)
  41. Kuhl, K. P. et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014). (10.1021/ja505791r) / J. Am. Chem. Soc. by KP Kuhl (2014)
  42. Goeppert, A., Czaun, M., Jones, J.-P., Surya Prakash, G. K. & Olah, G. A. Recycling of carbon dioxide to methanol and derived products – closing the loop. Chem. Soc. Rev. 43, 7995–8048 (2014). (10.1039/C4CS00122B) / Chem. Soc. Rev. by A Goeppert (2014)
  43. Studt, F. et al. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 6, 320–324 (2014). (10.1038/nchem.1873) / Nat. Chem. by F Studt (2014)
  44. Qiao, J. et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43, 631–675 (2014). (10.1039/C3CS60323G) / Chem. Soc. Rev. by J Qiao (2014)
  45. Bloch, E. D. et al. Hydrocarbon separations in a metal-organic framework with open iron(II) coordination sites. Science 335, 1606 LP-1610 (2012). (10.1126/science.1217544) / Science by ED Bloch (2012)
  46. Chu, S. Carbon capture and sequestration. Science 325, 1599 LP-1599 (2009). / Science by S Chu (2009)
  47. IPCC Carbon Dioxide Capture and Storage (eds Metz, B et al.) (Cambridge Univ. Press, 2005).
  48. Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity (US Department of Energy, 2013); http://go.nature.com/2gf13M7
  49. Mason, J. A. et al. Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O. J. Am. Chem. Soc. 137, 4787–4803 (2015). (10.1021/jacs.5b00838) / J. Am. Chem. Soc. by JA Mason (2015)
  50. Banerjee, R. et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319, 939–943 (2008). (10.1126/science.1152516) / Science by R Banerjee (2008)
  51. Chung, Y. G. et al. In silico discovery of metal-organic frameworks for precombustion CO2 capture using a genetic algorithm. Sci. Adv. 2, e1600909 (2016). (10.1126/sciadv.1600909) / Sci. Adv. by YG Chung (2016)
  52. Allam, R. J. et al. High efficiency and low cost of electricity generation from fossil fuels while eliminating atmospheric emissions, including carbon dioxide Energy Procedia 37, 1135–1149 (2013). (10.1016/j.egypro.2013.05.211) / Energy Procedia by RJ Allam (2013)
  53. D'Alessandro, D. M., Smit, B. & Long, J. R. Carbon dioxide capture: prospects for new materials. Angew. Chem. Int. Ed. 49, 6058–6082 (2010). (10.1002/anie.201000431) / Angew. Chem. Int. Ed. by DM D'Alessandro (2010)
  54. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008). (10.1038/nmat2090) / Nat. Mater. by GJ Snyder (2008)
  55. Lee, S. W. et al. An electrochemical system for efficiently harvesting low-grade heat energy. Nat. Commun. 5, 3942 (2014). (10.1038/ncomms4942) / Nat. Commun. by SW Lee (2014)
  56. Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014). (10.1038/nature13883) / Nature by AP Raman (2014)
  57. Hsu, P.-C. et al. Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019–1023 (2016). (10.1126/science.aaf5471) / Science by P-C Hsu (2016)
  58. Baetens, R., Jelle, B. P. & Gustavsen, A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review. Sol. Energ. Mat. Sol. Cells 94, 87–105 (2010). (10.1016/j.solmat.2009.08.021) / Sol. Energ. Mat. Sol. Cells by R Baetens (2010)
  59. Llordes, A., Garcia, G., Gazquez, J. & Milliron, D. J. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500, 323–326 (2013). (10.1038/nature12398) / Nature by A Llordes (2013)
  60. Iacopi, F., Van Hove, M., Charles, M. & Endo, K. Power electronics with wide bandgap materials: toward greener, more efficient technologies. MRS Bull. 40, 390–395 (2015). (10.1557/mrs.2015.71) / MRS Bull. by F Iacopi (2015)
  61. Wide Bandgap Power Electronics Technology Assessment (US Department of Energy, 2015); http://go.nature.com/2gEWuJw
  62. Xie, X., Criddle, C. & Cui, Y. Design and fabrication of bioelectrodes for microbial bioelectrochemical systems. Energy Environ. Sci. 8, 3418–3441 (2015). (10.1039/C5EE01862E) / Energy Environ. Sci. by X Xie (2015)
  63. Sakimoto, K. K., Wong, A. B. & Yang, P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351, 74 LP-77 (2015). / Science by KK Sakimoto (2015)
  64. Current and Future Cost of Photovoltaics (Fraunhofer Institute for Solar Energy Systems, 2015); http://go.nature.com/2aYJCgc
Dates
Type When
Created 8 years, 8 months ago (Dec. 20, 2016, 4:28 a.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 3:08 p.m.)
Indexed 7 hours, 43 minutes ago (Aug. 23, 2025, 1:14 a.m.)
Issued 8 years, 8 months ago (Dec. 20, 2016)
Published 8 years, 8 months ago (Dec. 20, 2016)
Published Online 8 years, 8 months ago (Dec. 20, 2016)
Published Print 8 years, 7 months ago (Jan. 1, 2017)
Funders 0

None

@article{Chu_2016, title={The path towards sustainable energy}, volume={16}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat4834}, DOI={10.1038/nmat4834}, number={1}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Chu, Steven and Cui, Yi and Liu, Nian}, year={2016}, month=dec, pages={16–22} }