Crossref
journal-article
Springer Science and Business Media LLC
Nature Materials (297)
References
64
Referenced
4,132
- International Energy Outlook 2016 (US Energy Information Administration, 2016).
- Butler, J. H. & Montzka, S. A. The NOAA Annual Greenhouse Gas Index (National Oceanic & Atmospheric Administration, 2016); http://go.nature.com/2fWAEjv / The NOAA Annual Greenhouse Gas Index by JH Butler (2016)
-
Roemmich, D. et al. Unabated planetary warming and its ocean structure since 2006. Nat. Clim. Change 5, 240–245 (2015).
(
10.1038/nclimate2513
) / Nat. Clim. Change by D Roemmich (2015) - IPCC Climate Change 2014: Synthesis Report (eds Pachauri, R. K. & Meyer, L. A.) (Cambridge Univ. Press, 2015).
-
Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).
(
10.1038/nature11475
) / Nature by S Chu (2012) -
Boot-Handford, M. E. et al. Carbon capture and storage update. Energy Environ. Sci. 7, 130–189 (2014).
(
10.1039/C3EE42350F
) / Energy Environ. Sci. by ME Boot-Handford (2014) -
Brédas, J.-L., Sargent, E. H. & Scholes, G. D. Photovoltaic concepts inspired by coherence effects in photosynthetic systems. Nat. Mater. 16, 35–44 (2017).
(
10.1038/nmat4767
) / Nat. Mater. by J-L Brédas (2017) -
Green, M. A. & Bremner, S. P. Energy conversion approaches and materials for high-efficiency photovoltaics. Nat. Mater. 16, 23–34 (2017).
(
10.1038/nmat4676
) / Nat. Mater. by MA Green (2017) -
Grey, C. P. & Tarascon, J. M. Sustainability and in situ monitoring in battery development. Nat. Mater. 16, 45–56 (2017).
(
10.1038/nmat4777
) / Nat. Mater. by CP Grey (2017) -
Montoya, J. H. et al. Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2017).
(
10.1038/nmat4778
) / Nat. Mater. by JH Montoya (2017) -
Stamenkovic, V. R., Strmcnik, D., Lopes, P. P. & Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2017).
(
10.1038/nmat4738
) / Nat. Mater. by VR Stamenkovic (2017) - PVX Spot Market Price Index Solar PV Modules (SolarServer, 2016); http://go.nature.com/2fHydjV
- Office of Energy Efficiency and Renewable Energy SunShot Vision Study (US Department of Energy, 2012); http://go.nature.com/2geV1LO
- Shahan, Z. Low solar prices scaring companies away from solar auctions. CleanTechnica (27 July 2016); http://go.nature.com/2fHsfPO / CleanTechnica by Z Shahan (2016)
- SunShot 2030 White Paper (US Department of Energy, 2016); http://go.nature.com/2g1g8xW
- Photovoltaics Report (Fraunhofer Institute for Solar Energy Systems, 2016); http://go.nature.com/2eusg7r
-
Zhu, J., Hsu, C.-M., Yu, Z., Fan, S. & Cui, Y. Nanodome solar cells with efficient light management and self-cleaning. Nano Lett. 10, 1979–1984 (2010).
(
10.1021/nl9034237
) / Nano Lett. by J Zhu (2010) -
Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).
(
10.1038/nature12340
) / Nature by J Burschka (2013) -
Seo, J., Noh, J. H. & Seok, S. I. Rational strategies for efficient perovskite solar cells. Acc. Chem. Res. 49, 562–572 (2016).
(
10.1021/acs.accounts.5b00444
) / Acc. Chem. Res. by J Seo (2016) -
Nishimoto, S. & Bhushan, B. Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Adv. 3, 671–690 (2013).
(
10.1039/C2RA21260A
) / RSC Adv. by S Nishimoto (2013) -
Zhang, P. & Lv, F. Y. A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications. Energy 82, 1068–1087 (2015).
(
10.1016/j.energy.2015.01.061
) / Energy by P Zhang (2015) -
Gogolides, E., Ellinas, K. & Tserepi, A. Hierarchical micro and nano structured, hydrophilic, superhydrophobic and superoleophobic surfaces incorporated in microfluidics, microarrays and lab on chip microsystems. Microelectron. Eng. 132, 135–155 (2015).
(
10.1016/j.mee.2014.10.002
) / Microelectron. Eng. by E Gogolides (2015) - EV Everywhere Grand Challenge Blueprint (US Department of Energy, 2013); http://go.nature.com/2gRubKz
-
Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004).
(
10.1021/cr020731c
) / Chem. Rev. by MS Whittingham (2004) -
Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotech. 3, 31–35 (2008).
(
10.1038/nnano.2007.411
) / Nat. Nanotech. by CK Chan (2008) -
Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–6 (2009).
(
10.1038/nmat2460
) / Nat. Mater. by X Ji (2009) -
Lin, D. et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotech. 11, 626–632 (2016).
(
10.1038/nnano.2016.32
) / Nat. Nanotech. by D Lin (2016) -
Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–35 (2013).
(
10.1038/nmat3699
) / Nat. Mater. by M Sathiya (2013) -
Li, X., Zhang, H., Mai, Z., Zhang, H. & Vankelecom, I. Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ. Sci. 4, 1147 (2011).
(
10.1039/c0ee00770f
) / Energy Environ. Sci. by X Li (2011) -
Li, B. et al. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat. Commun. 6, 6303 (2015).
(
10.1038/ncomms7303
) / Nat. Commun. by B Li (2015) -
Yang, Y., Zheng, G. & Cui, Y. A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage. Energy Environ. Sci. 6, 1552–1558 (2013).
(
10.1039/c3ee00072a
) / Energy Environ. Sci. by Y Yang (2013) -
Kim, Y. J., Wu, W., Chun, S.-E., Whitacre, J. F. & Bettinger, C. J. Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices. Proc. Natl Acad. Sci. USA 110, 20912–7 (2013).
(
10.1073/pnas.1314345110
) / Proc. Natl Acad. Sci. USA by YJ Kim (2013) -
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotech. 6, 147–150 (2011).
(
10.1038/nnano.2010.279
) / Nat. Nanotech. by B Radisavljevic (2011) -
Hinnemann, B. et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005).
(
10.1021/ja0504690
) / J. Am. Chem. Soc. by B Hinnemann (2005) -
Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).
(
10.1126/science.1141483
) / Science by TF Jaramillo (2007) -
Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007).
(
10.1126/science.1135941
) / Science by VR Stamenkovic (2007) - Chen, C. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339 LP-1343 (2014). / Science by C Chen (2014)
-
Wang, H. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl Acad. Sci. USA 110, 19701–19706 (2013).
(
10.1073/pnas.1316792110
) / Proc. Natl Acad. Sci. USA by H Wang (2013) -
Asadi, M. et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 353, 467–470 (2016).
(
10.1126/science.aaf4767
) / Science by M Asadi (2016) -
Gupta, K., Bersani, M. & Darr, J. A. Highly efficient electro-reduction of CO2 to formic acid by nano-copper. J. Mater. Chem. A 4, 13786–13794 (2016).
(
10.1039/C6TA04874A
) / J. Mater. Chem. A by K Gupta (2016) -
Kuhl, K. P. et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014).
(
10.1021/ja505791r
) / J. Am. Chem. Soc. by KP Kuhl (2014) -
Goeppert, A., Czaun, M., Jones, J.-P., Surya Prakash, G. K. & Olah, G. A. Recycling of carbon dioxide to methanol and derived products – closing the loop. Chem. Soc. Rev. 43, 7995–8048 (2014).
(
10.1039/C4CS00122B
) / Chem. Soc. Rev. by A Goeppert (2014) -
Studt, F. et al. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 6, 320–324 (2014).
(
10.1038/nchem.1873
) / Nat. Chem. by F Studt (2014) -
Qiao, J. et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43, 631–675 (2014).
(
10.1039/C3CS60323G
) / Chem. Soc. Rev. by J Qiao (2014) -
Bloch, E. D. et al. Hydrocarbon separations in a metal-organic framework with open iron(II) coordination sites. Science 335, 1606 LP-1610 (2012).
(
10.1126/science.1217544
) / Science by ED Bloch (2012) - Chu, S. Carbon capture and sequestration. Science 325, 1599 LP-1599 (2009). / Science by S Chu (2009)
- IPCC Carbon Dioxide Capture and Storage (eds Metz, B et al.) (Cambridge Univ. Press, 2005).
- Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity (US Department of Energy, 2013); http://go.nature.com/2gf13M7
-
Mason, J. A. et al. Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O. J. Am. Chem. Soc. 137, 4787–4803 (2015).
(
10.1021/jacs.5b00838
) / J. Am. Chem. Soc. by JA Mason (2015) -
Banerjee, R. et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319, 939–943 (2008).
(
10.1126/science.1152516
) / Science by R Banerjee (2008) -
Chung, Y. G. et al. In silico discovery of metal-organic frameworks for precombustion CO2 capture using a genetic algorithm. Sci. Adv. 2, e1600909 (2016).
(
10.1126/sciadv.1600909
) / Sci. Adv. by YG Chung (2016) -
Allam, R. J. et al. High efficiency and low cost of electricity generation from fossil fuels while eliminating atmospheric emissions, including carbon dioxide Energy Procedia 37, 1135–1149 (2013).
(
10.1016/j.egypro.2013.05.211
) / Energy Procedia by RJ Allam (2013) -
D'Alessandro, D. M., Smit, B. & Long, J. R. Carbon dioxide capture: prospects for new materials. Angew. Chem. Int. Ed. 49, 6058–6082 (2010).
(
10.1002/anie.201000431
) / Angew. Chem. Int. Ed. by DM D'Alessandro (2010) -
Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).
(
10.1038/nmat2090
) / Nat. Mater. by GJ Snyder (2008) -
Lee, S. W. et al. An electrochemical system for efficiently harvesting low-grade heat energy. Nat. Commun. 5, 3942 (2014).
(
10.1038/ncomms4942
) / Nat. Commun. by SW Lee (2014) -
Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014).
(
10.1038/nature13883
) / Nature by AP Raman (2014) -
Hsu, P.-C. et al. Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019–1023 (2016).
(
10.1126/science.aaf5471
) / Science by P-C Hsu (2016) -
Baetens, R., Jelle, B. P. & Gustavsen, A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review. Sol. Energ. Mat. Sol. Cells 94, 87–105 (2010).
(
10.1016/j.solmat.2009.08.021
) / Sol. Energ. Mat. Sol. Cells by R Baetens (2010) -
Llordes, A., Garcia, G., Gazquez, J. & Milliron, D. J. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500, 323–326 (2013).
(
10.1038/nature12398
) / Nature by A Llordes (2013) -
Iacopi, F., Van Hove, M., Charles, M. & Endo, K. Power electronics with wide bandgap materials: toward greener, more efficient technologies. MRS Bull. 40, 390–395 (2015).
(
10.1557/mrs.2015.71
) / MRS Bull. by F Iacopi (2015) - Wide Bandgap Power Electronics Technology Assessment (US Department of Energy, 2015); http://go.nature.com/2gEWuJw
-
Xie, X., Criddle, C. & Cui, Y. Design and fabrication of bioelectrodes for microbial bioelectrochemical systems. Energy Environ. Sci. 8, 3418–3441 (2015).
(
10.1039/C5EE01862E
) / Energy Environ. Sci. by X Xie (2015) - Sakimoto, K. K., Wong, A. B. & Yang, P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351, 74 LP-77 (2015). / Science by KK Sakimoto (2015)
- Current and Future Cost of Photovoltaics (Fraunhofer Institute for Solar Energy Systems, 2015); http://go.nature.com/2aYJCgc
Dates
Type | When |
---|---|
Created | 8 years, 8 months ago (Dec. 20, 2016, 4:28 a.m.) |
Deposited | 3 years, 1 month ago (July 6, 2022, 3:08 p.m.) |
Indexed | 7 hours, 43 minutes ago (Aug. 23, 2025, 1:14 a.m.) |
Issued | 8 years, 8 months ago (Dec. 20, 2016) |
Published | 8 years, 8 months ago (Dec. 20, 2016) |
Published Online | 8 years, 8 months ago (Dec. 20, 2016) |
Published Print | 8 years, 7 months ago (Jan. 1, 2017) |
@article{Chu_2016, title={The path towards sustainable energy}, volume={16}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat4834}, DOI={10.1038/nmat4834}, number={1}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Chu, Steven and Cui, Yi and Liu, Nian}, year={2016}, month=dec, pages={16–22} }