Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Koros, W. J., & Zhang, C. (2017). Materials for next-generation molecularly selective synthetic membranes. Nature Materials, 16(3), 289–297.

Authors 2
  1. William J. Koros (first)
  2. Chen Zhang (additional)
References 94 Referenced 1,022
  1. Baker, R. W. Membrane Technology and Applications 2nd edn (Wiley, 2004). (10.1002/0470020393) / Membrane Technology and Applications by RW Baker (2004)
  2. Koros, W. J. & Lively, R. P. Water and beyond: expanding the spectrum of large-scale energy efficient separation processes. AIChE J. 58, 2624–2633 (2012). (10.1002/aic.13888) / AIChE J. by WJ Koros (2012)
  3. Baker, R. W. Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 41, 1393–1411 (2002). (10.1021/ie0108088) / Ind. Eng. Chem. Res. by RW Baker (2002)
  4. Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016). (10.1038/532435a) / Nature by DS Sholl (2016)
  5. Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008). (10.1038/nature06599) / Nature by MA Shannon (2008)
  6. Koros, W. J. & Fleming, G. K. Membrane-based gas separation. J. Membr. Sci. 83, 1–80 (1993). (10.1016/0376-7388(93)80013-N) / J. Membr. Sci. by WJ Koros (1993)
  7. Koros, W. J., Fleming, G. K., Jordan, S. M., Kim, T. H. & Hoehn, H. H. Polymeric membrane materials for solution-diffusion based permeation separations. Prog. Polym. Sci. 13, 339–401 (1988). (10.1016/0079-6700(88)90002-0) / Prog. Polym. Sci. by WJ Koros (1988)
  8. Robeson, L. M., Smith, Z. P., Freeman, B. D. & Paul, D. R. Contributions of diffusion and solubility selectivity to the upper bound analysis for glassy gas separation membranes. J. Membr. Sci. 453, 71–83 (2014). (10.1016/j.memsci.2013.10.066) / J. Membr. Sci. by LM Robeson (2014)
  9. Geise, G. M., Paul, D. R. & Freeman, B. D. Fundamental water and salt transport properties of polymeric materials. Prog. Polym. Sci. 39, 1–42 (2014). (10.1016/j.progpolymsci.2013.07.001) / Prog. Polym. Sci. by GM Geise (2014)
  10. Petropoulos, J. H. in Polymeric Gas Separation Membranes (eds Paul, D. R. & Yampolskii, Y. P.) 17–82 (CRC, 1993). / Polymeric Gas Separation Membranes by JH Petropoulos (1993)
  11. Karger, J. & Ruthven, D. M. Diffusion in Zeolites and Other Microporous Solids (Wiley, 1992). / Diffusion in Zeolites and Other Microporous Solids by J Karger (1992)
  12. Singh, A. & Koros, W. J. Significance of entropic selectivity for advanced gas separation membranes. Ind. Eng. Chem. Res. 35, 1231–1234 (1996). (10.1021/ie950559l) / Ind. Eng. Chem. Res. by A Singh (1996)
  13. Ning, X. & Koros, W. J. Carbon molecular sieve membranes derived from Matrimid® polyimide for nitrogen/methane separation. Carbon 66, 511–522 (2014). (10.1016/j.carbon.2013.09.028) / Carbon by X Ning (2014)
  14. Robeson, L. M. The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008). (10.1016/j.memsci.2008.04.030) / J. Membr. Sci. by LM Robeson (2008)
  15. Omole, I. C., Adams, R. T., Miller, S. J. & Koros, W. J. Effects of CO2 on a high performance hollow-fiber membrane for natural gas purification. Ind. Eng. Chem. Res. 49, 4887–4896 (2010). (10.1021/ie100084s) / Ind. Eng. Chem. Res. by IC Omole (2010)
  16. O'Keeffe, M. & Yaghi, O. M. Deconstructing the crystal structures of metal–organic frameworks and related materials into their underlying nets. Chem. Rev. 112, 675–702 (2012). (10.1021/cr200205j) / Chem. Rev. by M O'Keeffe (2012)
  17. Deng, H. X. et al. Large-pore apertures in a series of metal–organic frameworks. Science 336, 1018–1023 (2012). (10.1126/science.1220131) / Science by HX Deng (2012)
  18. Bae, Y.S. & Snurr, R. Q. Development and evaluation of porous materials for carbon dioxide separation and capture. Angew. Chem. Int. Ed. 50, 11586–11596 (2011). (10.1002/anie.201101891) / Angew. Chem. Int. Ed. by YS Bae (2011)
  19. Bae, Y. S., Farha, O. K., Hupp, J. T. & Snurr, R. Q. Enhancement of CO2/N2 selectivity in a metal–organic framework by cavity modification. J. Mater. Chem. 19, 2131–2134 (2009). (10.1039/b900390h) / J. Mater. Chem. by YS Bae (2009)
  20. Cadiau, A., Adil, K., Bhatt, P. M., Belmabkhout, Y. & Eddaoudi, M. A metal–organic framework-based splitter for separating propylene from propane. Science 353, 137–140 (2016). (10.1126/science.aaf6323) / Science by A Cadiau (2016)
  21. Zhang, C. & Koros, W. J. Tailoring the transport properties of zeolitic imidazolate frameworks by post-synthetic thermal modification. ACS Appl. Mater. Interfaces 7, 23407–23411 (2015). (10.1021/acsami.5b07769) / ACS Appl. Mater. Interfaces by C Zhang (2015)
  22. Eum, K. et al. Highly tunable molecular sieving and adsorption properties of mixed-linker zeolitic imidazolate frameworks. J. Am. Chem. Soc. 137, 4191–4197 (2015). (10.1021/jacs.5b00803) / J. Am. Chem. Soc. by K Eum (2015)
  23. Perez, E. V., Balkus, K. J., Ferraris, J. P. & Musselman, I. H. Mixed-matrix membranes containing MOF-5 for gas separations. J. Membr. Sci. 328, 165–173 (2009). (10.1016/j.memsci.2008.12.006) / J. Membr. Sci. by EV Perez (2009)
  24. Duan, C., Jie, X., Liu, D., Cao, Y. & Yuan, Q. Post-treatment effect on gas separation property of mixed matrix membranes containing metal organic frameworks. J. Membr. Sci. 466, 92–102 (2014). (10.1016/j.memsci.2014.04.024) / J. Membr. Sci. by C Duan (2014)
  25. Zhang, C. & Koros, W. J. Zeolitic imidazolate framework-enabled membranes: challenges and opportunities. J. Phys. Chem. Lett. 6, 3841–3849 (2015). (10.1021/acs.jpclett.5b01602) / J. Phys. Chem. Lett. by C Zhang (2015)
  26. Kwon, H. T. & Jeong, H.K. In situ synthesis of thin zeolitic–imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation. J. Am. Chem. Soc. 135, 10763–10768 (2013). (10.1021/ja403849c) / J. Am. Chem. Soc. by HT Kwon (2013)
  27. Liu, D. F., Ma, X. L., Xi, H. X. & Lin, Y. S. Gas transport properties and propylene/propane separation characteristics of ZIF-8 membranes. J. Membr. Sci. 451, 85–93 (2014). (10.1016/j.memsci.2013.09.029) / J. Membr. Sci. by DF Liu (2014)
  28. Pan, Y. C., Liu, W., Zhao, Y. J., Wang, C. Q. & Lai, Z. P. Improved ZIF-8 membrane: effect of activation procedure and determination of diffusivities of light hydrocarbons. J. Membr. Sci. 493, 88–96 (2015). (10.1016/j.memsci.2015.06.019) / J. Membr. Sci. by YC Pan (2015)
  29. Brown, A. J. et al. Interfacial microfluidic processing of metal–organic framework hollow fiber membranes. Science 345, 72–75 (2014). (10.1126/science.1251181) / Science by AJ Brown (2014)
  30. Liu, Q., Wang, N., Caro, J. & Huang, A. Bio-inspired polydopamine: a versatile and powerful platform for covalent synthesis of molecular sieve membranes. J. Am. Chem. Soc. 135, 17679–17682 (2013). (10.1021/ja4080562) / J. Am. Chem. Soc. by Q Liu (2013)
  31. Rao, M. B. & Sircar, S. Nanoporous carbon membranes for separation of gas-mixtures by selective surface flow. J. Membr. Sci. 85, 253–264 (1993). (10.1016/0376-7388(93)85279-6) / J. Membr. Sci. by MB Rao (1993)
  32. Pinnau, I., Casillas, C. G., Morisato, A. & Freeman, B. D. Hydrocarbon/hydrogen mixed gas permeation in poly(1trimethylsilyl1-propyne) (PTMSP), poly(1phenyl1-propyne) (PPP), and PTMSP/PPP blends. J. Polym. Sci. Pol. Phys. 34, 2613–2621 (1996). (10.1002/(SICI)1099-0488(19961115)34:15<2613::AID-POLB9>3.0.CO;2-T) / J. Polym. Sci. Pol. Phys. by I Pinnau (1996)
  33. Thomas, S., Pinnau, I., Du, N. & Guiver, M. D. Hydrocarbon/hydrogen mixed-gas permeation properties of PIM-1, an amorphous microporous spirobisindane polymer. J. Membr. Sci. 338, 1–4 (2009). (10.1016/j.memsci.2009.04.021) / J. Membr. Sci. by S Thomas (2009)
  34. Rui, Z., James, J. B., Kasik, A. & Lin, Y. S. Metal–organic framework membrane process for high purity CO2 production. AIChE J. 62, 3836–3841 (2016). (10.1002/aic.15367) / AIChE J. by Z Rui (2016)
  35. Park, H. B. et al. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 318, 254–258 (2007). (10.1126/science.1146744) / Science by HB Park (2007)
  36. McKeown, N. B. & Budd, P. M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 35, 675–683 (2006). (10.1039/b600349d) / Chem. Soc. Rev. by NB McKeown (2006)
  37. Sanders, D. E. et al. Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer 54, 4729–4761 (2013). (10.1016/j.polymer.2013.05.075) / Polymer by DE Sanders (2013)
  38. Swaidan, R., Ghanem, B. & Pinnau, I. Fine-tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membrane-based air and hydrogen separations. ACS Macro Lett. 4, 947–951 (2015). (10.1021/acsmacrolett.5b00512) / ACS Macro Lett. by R Swaidan (2015)
  39. Jung, C. H., Lee, J. E., Han, S. H., Park, H. B. & Lee, Y. M. Highly permeable and selective poly(benzoxazolecoimide) membranes for gas separation. J. Membr. Sci. 350, 301–309 (2010). (10.1016/j.memsci.2010.01.005) / J. Membr. Sci. by CH Jung (2010)
  40. Carta, M. et al. Triptycene induced enhancement of membrane gas selectivity for microporous Tröger's base polymers. Adv. Mater. 26, 3526–3531 (2014). (10.1002/adma.201305783) / Adv. Mater. by M Carta (2014)
  41. Ghanem, B. S., Swaidan, R., Ma, X., Litwiller, E. & Pinnau, I. Energy-efficient hydrogen separation by AB-type ladder-polymer molecular sieves. Adv. Mater. 26, 6696–6700 (2014). (10.1002/adma.201401328) / Adv. Mater. by BS Ghanem (2014)
  42. Petropoulos, J. H., Papadokostaki, K. G., Minelli, M. & Doghieri, F. On the role of diffusivity ratio and partition coefficient in diffusional molecular transport in binary composite materials, with special reference to the Maxwell equation. J. Membr. Sci. 456, 162–166 (2014). (10.1016/j.memsci.2013.12.079) / J. Membr. Sci. by JH Petropoulos (2014)
  43. Zhang, C., Dai, Y., Johnson, J. R., Karvan, O. & Koros, W. J. High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. J. Membr. Sci. 389, 34–42 (2012). (10.1016/j.memsci.2011.10.003) / J. Membr. Sci. by C Zhang (2012)
  44. Swaidan, R. J., Ma, X. H. & Pinnau, I. Tuning PIM-PI-OH/Z-MOF-Based Mixed-Matrix Membranes for Highly Efficient Propylene/Propane Separation. In NAMS 2016 (2016). / NAMS 2016 by RJ Swaidan (2016)
  45. Bachman, J. E., Smith, Z. P., Li, T., Xu, T. & Long, J. R. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystals. Nat. Mater. 15, 845–849 (2016). (10.1038/nmat4621) / Nat. Mater. by JE Bachman (2016)
  46. Geier, S. J. et al. Selective adsorption of ethylene over ethane and propylene over propane in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn). Chem. Sci. 4, 2054–2061 (2013). (10.1039/c3sc00032j) / Chem. Sci. by SJ Geier (2013)
  47. Lin, R. et al. Mixed matrix membranes with strengthened MOFs/polymer interfacial interaction and improved membrane performance. ACS Appl. Mater. Interfaces 6, 5609–5618 (2014). (10.1021/am500081e) / ACS Appl. Mater. Interfaces by R Lin (2014)
  48. Seoane, B. et al. Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture? Chem. Soc. Rev. 44, 2421–2454 (2015). (10.1039/C4CS00437J) / Chem. Soc. Rev. by B Seoane (2015)
  49. Steel, K. M. & Koros, W. J. An investigation of the effects of pyrolysis parameters on gas separation properties of carbon materials. Carbon 43, 1843–1856 (2005). (10.1016/j.carbon.2005.02.028) / Carbon by KM Steel (2005)
  50. Salinas, O., Ma, X. H., Litwiller, E. & Pinnau, I. Ethylene/ethane permeation, diffusion and gas sorption properties of carbon molecular sieve membranes derived from the prototype ladder polymer of intrinsic microporosity (PIM-1). J. Membr. Sci. 504, 133–140 (2016). (10.1016/j.memsci.2015.12.052) / J. Membr. Sci. by O Salinas (2016)
  51. Ma, X. L., Lin, Y. S., Wei, X. T. & Kniep, J. Ultrathin carbon molecular sieve membrane for propylene/propane separation. AIChE J. 62, 491–499 (2016). (10.1002/aic.15005) / AIChE J. by XL Ma (2016)
  52. Bhuwania, N. et al. Engineering substructure morphology of asymmetric carbon molecular sieve hollow fiber membranes. Carbon 76, 417–434 (2014). (10.1016/j.carbon.2014.05.008) / Carbon by N Bhuwania (2014)
  53. Xu, L., Rungta, M. & Koros, W. J. Matrimid® derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation. J. Membr. Sci. 380, 138–147 (2011). (10.1016/j.memsci.2011.06.037) / J. Membr. Sci. by L Xu (2011)
  54. Louie, J. S., Pinnau, I. & Reinhard, M. Gas and liquid permeation properties of modified interfacial composite reverse osmosis membranes. J. Membr. Sci. 325, 793–800 (2008). (10.1016/j.memsci.2008.09.006) / J. Membr. Sci. by JS Louie (2008)
  55. Ma, C. H. & Koros, W. J. Estercrosslinkable composite hollow fiber membranes for CO2 removal from natural gas. Ind. Eng. Chem. Res. 52, 10495–10505 (2013). (10.1021/ie303531r) / Ind. Eng. Chem. Res. by CH Ma (2013)
  56. Vrijenhoek, E. M., Hong, S. & Elimelech, M. Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. J. Membr. Sci. 188, 115–128 (2001). (10.1016/S0376-7388(01)00376-3) / J. Membr. Sci. by EM Vrijenhoek (2001)
  57. Lisitsin, D., Hasson, D. & Semiat, R. Critical flux detection in a silica scaling RO system. Desalination 186, 311–318 (2005). (10.1016/j.desal.2005.06.007) / Desalination by D Lisitsin (2005)
  58. Bacchin, P., Aimar, P. & Field, R. W. Critical and sustainable fluxes: theory, experiments and applications. J. Membr. Sci. 281, 42–69 (2006). (10.1016/j.memsci.2006.04.014) / J. Membr. Sci. by P Bacchin (2006)
  59. Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B. & Moulin, P. Reverse osmosis desalination: water sources, technology, and today's challenges. Water Res. 43, 2317–2348 (2009). (10.1016/j.watres.2009.03.010) / Water Res. by LF Greenlee (2009)
  60. Everett, D. H. Thermodynamics of interfaces: an appreciation of the work of Géza Schay. Colloids Surf. A 71, 205–217 (1993). (10.1016/0927-7757(93)80036-E) / Colloids Surf. A by DH Everett (1993)
  61. Elimelech, M., Zhu, X. H., Childress, A. E. & Hong, S. K. Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. J. Membr. Sci. 127, 101–109 (1997). (10.1016/S0376-7388(96)00351-1) / J. Membr. Sci. by M Elimelech (1997)
  62. Schwinge, J., Neal, P. R., Wiley, D. E., Fletcher, D. F. & Fane, A. G. Spiral wound modules and spacers: review and analysis. J. Membr. Sci. 242, 129–153 (2004). (10.1016/j.memsci.2003.09.031) / J. Membr. Sci. by J Schwinge (2004)
  63. Ning, R. Y., Troyer, T. L. & Tominello, R. S. Chemical control of colloidal fouling of reverse osmosis systems. Desalination 172, 1–6 (2005). (10.1016/j.desal.2004.06.192) / Desalination by RY Ning (2005)
  64. Herzberg, M. & Elimelech, M. Biofouling of reverse osmosis membranes: role of biofilm-enhanced osmotic pressure. J. Membr. Sci. 295, 11–20 (2007). (10.1016/j.memsci.2007.02.024) / J. Membr. Sci. by M Herzberg (2007)
  65. Bowen, T. C., Noble, R. D. & Falconer, J. L. Fundamentals and applications of pervaporation through zeolite membranes. J. Membr. Sci. 245, 1–33 (2004). (10.1016/j.memsci.2004.06.059) / J. Membr. Sci. by TC Bowen (2004)
  66. Liu, R., Qiao, X. & Chung, T.S. The development of high performance P84 co-polyimide hollow fibers for pervaporation dehydration of isopropanol. Chem. Eng. Sci. 60, 6674–6686 (2005). (10.1016/j.ces.2005.05.066) / Chem. Eng. Sci. by R Liu (2005)
  67. Okamoto, K.-i., Kita, H. & Horii, K. Zeolite NaA membrane: preparation, single-gas permeation, and pervaporation and vapor permeation of water/organic liquid mixtures. Ind. Eng. Chem. Res. 40, 163–175 (2001). (10.1021/ie0006007) / Ind. Eng. Chem. Res. by K-i Okamoto (2001)
  68. Morigami, Y., Kondo, M., Abe, J., Kita, H. & Okamoto, K. The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane. Sep. Purif. Technol. 25, 251–260 (2001). (10.1016/S1383-5866(01)00109-5) / Sep. Purif. Technol. by Y Morigami (2001)
  69. Gallego-Lizon, T., Edwards, E., Lobiundo, G. & Freitas dos Santos, L. Dehydration of water/t-butanol mixtures by pervaporation: comparative study of commercially available polymeric, microporous silica and zeolite membranes. J. Membr. Sci. 197, 309–319 (2002). (10.1016/S0376-7388(01)00650-0) / J. Membr. Sci. by T Gallego-Lizon (2002)
  70. Chaudry, M. A. Water and ions transport mechanism in hyperfiltration with symmetric cellulose acetate membranes. J. Membr. Sci. 206, 319–332 (2002). (10.1016/S0376-7388(01)00783-9) / J. Membr. Sci. by MA Chaudry (2002)
  71. Marchetti, P., Jimenez Solomon, M. F., Szekely, G. & Livingston, A. G. Molecular separation with organic solvent nanofiltration: a critical review. Chem. Rev. 114, 10735–10806 (2014). (10.1021/cr500006j) / Chem. Rev. by P Marchetti (2014)
  72. Cath, T. Y., Childress, A. E. & Elimelech, M. Forward osmosis: principles, applications, and recent developments. J. Membr. Sci. 281, 70–87 (2006). (10.1016/j.memsci.2006.05.048) / J. Membr. Sci. by TY Cath (2006)
  73. Bui, N. N., Lind, M. L., Hoek, E. M. V. & McCutcheon, J. R. Electrospun nanofiber supported thin film composite membranes for engineered osmosis. J. Membr. Sci. 385, 10–19 (2011). / J. Membr. Sci. by NN Bui (2011)
  74. Shaffer, D. L., Werber, J. R., Jaramillo, H., Lin, S. H. & Elimelech, M. Forward osmosis: where are we now? Desalination 356, 271–284 (2015). (10.1016/j.desal.2014.10.031) / Desalination by DL Shaffer (2015)
  75. Jin, Y. & Su, Z. H. Effects of polymerization conditions on hydrophilic groups in aromatic polyamide thin films. J. Membr. Sci. 330, 175–179 (2009). (10.1016/j.memsci.2008.12.055) / J. Membr. Sci. by Y Jin (2009)
  76. Zhao, L. & Ho, W. S. W. Novel reverse osmosis membranes incorporated with a hydrophilic additive for seawater desalination. J. Membr. Sci. 455, 44–54 (2014). (10.1016/j.memsci.2013.12.066) / J. Membr. Sci. by L Zhao (2014)
  77. Karan, S., Jiang, Z. & Livingston, A. G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348, 1347–1351 (2015). (10.1126/science.aaa5058) / Science by S Karan (2015)
  78. Cadotte, J. E. Reverse osmosis membrane. US patent 4,259,183 (1981).
  79. Geise, G. M. et al. Water purification by membranes: the role of polymer science. J. Polym. Sci. B 48, 1685–1718 (2010). (10.1002/polb.22037) / J. Polym. Sci. B by GM Geise (2010)
  80. Jeong, B.H. et al. Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J. Membr. Sci. 294, 1–7 (2007). (10.1016/j.memsci.2007.02.025) / J. Membr. Sci. by BH Jeong (2007)
  81. Lind, M. L., Eumine Suk, D., Nguyen, T.V. & Hoek, E. M. V. Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance. Environ. Sci. Technol. 44, 8230–8235 (2010). (10.1021/es101569p) / Environ. Sci. Technol. by ML Lind (2010)
  82. Wang, J. W. et al. A critical review of transport through osmotic membranes. J. Membr. Sci. 454, 516–537 (2014). (10.1016/j.memsci.2013.12.034) / J. Membr. Sci. by JW Wang (2014)
  83. Rana, D. & Matsuura, T. Surface modifications for antifouling membranes. Chem. Rev. 110, 2448–2471 (2010). (10.1021/cr800208y) / Chem. Rev. by D Rana (2010)
  84. Cohen-Tanugi, D., McGovern, R. K., Dave, S. H., Lienhard, J. H. & Grossman, J. C. Quantifying the potential of ultra-permeable membranes for water desalination. Energy Environ. Sci. 7, 1134–1141 (2014). (10.1039/C3EE43221A) / Energy Environ. Sci. by D Cohen-Tanugi (2014)
  85. Shrivastava, A., Rosenberg, S. & Peery, M. Energy efficiency breakdown of reverse osmosis and its implications on future innovation roadmap for desalination. Desalination 368, 181–192 (2015). (10.1016/j.desal.2015.01.005) / Desalination by A Shrivastava (2015)
  86. Gregory, K. B., Vidic, R. D. & Dzombak, D. A. Water management challenges associated with the production of shale gas by hydraulic fracturing. Elements 7, 181–186 (2011). (10.2113/gselements.7.3.181) / Elements by KB Gregory (2011)
  87. Kim, I.C. & Lee, K.H. Preparation of interfacially synthesized and silicone-coated composite polyamide nanofiltration membranes with high performance. Ind. Eng. Chem. Res. 41, 5523–5528 (2002). (10.1021/ie0202064) / Ind. Eng. Chem. Res. by IC Kim (2002)
  88. Jimenez Solomon, M. F., Bhole, Y. & Livingston, A. G. High flux hydrophobic membranes for organic solvent nanofiltration (OSN)—interfacial polymerization, surface modification and solvent activation. J. Membr. Sci. 434, 193–203 (2013). (10.1016/j.memsci.2013.01.055) / J. Membr. Sci. by MF Jimenez Solomon (2013)
  89. Jimenez-Solomon, M. F., Song, Q., Jelfs, K. E., Munoz-Ibanez, M. & Livingston, A. G. Polymer nanofilms with enhanced microporosity by interfacial polymerization. Nat. Mater. 15, 760–767 (2016). (10.1038/nmat4638) / Nat. Mater. by MF Jimenez-Solomon (2016)
  90. Koh, D.Y., McCool, B. A., Deckman, H. W. & Lively, R. P. Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes. Science 353, 804–807 (2016). (10.1126/science.aaf1343) / Science by DY Koh (2016)
  91. Jenkins, G. M. & Kawamura, K. Polymeric Carbons: Carbon Fibre, Glass and Char (Cambridge Univ. Press, 1976). / Polymeric Carbons: Carbon Fibre, Glass and Char by GM Jenkins (1976)
  92. Qiu, W., Zhang, K., Li, F. S., Zhang, K. & Koros, W. J. Gas separation performance of carbon molecular sieve membranes based on 6FDA-mPDA/DABA (3:2) polyimide. ChemSusChem 7, 1186–1194 (2014). (10.1002/cssc.201300851) / ChemSusChem by W Qiu (2014)
  93. Carruthers, S. B., Ramos, G. L. & Koros, W. J. Morphology of integral-skin layers in hollow-fiber gas-separation membranes. J. Appl. Polym. Sci. 90, 399–411 (2003). (10.1002/app.12623) / J. Appl. Polym. Sci. by SB Carruthers (2003)
  94. Xie, W. et al. Polyamide interfacial composite membranes prepared from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine. J. Membr. Sci. 403, 152–161 (2012). (10.1016/j.memsci.2012.02.038) / J. Membr. Sci. by W Xie (2012)
Dates
Type When
Created 8 years, 7 months ago (Jan. 23, 2017, 2:06 p.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 3:26 p.m.)
Indexed 16 minutes ago (Aug. 28, 2025, 11:03 p.m.)
Issued 8 years, 7 months ago (Jan. 23, 2017)
Published 8 years, 7 months ago (Jan. 23, 2017)
Published Online 8 years, 7 months ago (Jan. 23, 2017)
Published Print 8 years, 5 months ago (March 1, 2017)
Funders 0

None

@article{Koros_2017, title={Materials for next-generation molecularly selective synthetic membranes}, volume={16}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat4805}, DOI={10.1038/nmat4805}, number={3}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Koros, William J. and Zhang, Chen}, year={2017}, month=jan, pages={289–297} }