Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Ergen, O., Gilbert, S. M., Pham, T., Turner, S. J., Tan, M. T. Z., Worsley, M. A., & Zettl, A. (2016). Graded bandgap perovskite solar cells. Nature Materials, 16(5), 522–525.

Authors 7
  1. Onur Ergen (first)
  2. S. Matt Gilbert (additional)
  3. Thang Pham (additional)
  4. Sally J. Turner (additional)
  5. Mark Tian Zhi Tan (additional)
  6. Marcus A. Worsley (additional)
  7. Alex Zettl (additional)
References 30 Referenced 145
  1. Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015). (10.1038/nature14133) / Nature by NJ Jeon (2015)
  2. Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014). (10.1126/science.1254050) / Science by H Zhou (2014)
  3. Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 45). Prog. Photovolt. Res. Appl. 23, 1–9 (2015). (10.1002/pip.2573) / Prog. Photovolt. Res. Appl. by MA Green (2015)
  4. Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016). (10.1039/C5EE03874J) / Energy Environ. Sci. by M Saliba (2016)
  5. Noel, N. K. et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061–3068 (2014). (10.1039/C4EE01076K) / Energy Environ. Sci. by NK Noel (2014)
  6. Bi, D. et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2, e1501170 (2016). (10.1126/sciadv.1501170) / Sci. Adv. by D Bi (2016)
  7. Bailie, C. D. et al. Semi-transparent perovkite solar cells for tandems with silicon and CIGS. Energy Environ. Sci. 8, 956–963 (2015). (10.1039/C4EE03322A) / Energy Environ. Sci. by CD Bailie (2015)
  8. Löper, P. et al. Organic–inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. Phys. Chem. Chem. Phys. 17, 1619–1629 (2015). (10.1039/C4CP03788J) / Phys. Chem. Chem. Phys. by P Löper (2015)
  9. Werner, J. et al. Sputtered rear electrode with broadband transparency for perovkite solar cells. Sol. Energy Mater. Sol. Cells 141, 407–413 (2015). (10.1016/j.solmat.2015.06.024) / Sol. Energy Mater. Sol. Cells by J Werner (2015)
  10. Mailoa, J. P. et al. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl. Phys. Lett. 106, 121105 (2015). (10.1063/1.4914179) / Appl. Phys. Lett. by JP Mailoa (2015)
  11. Albrecht, S. et al. Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy Environ. Sci. 9, 81–88 (2016). (10.1039/C5EE02965A) / Energy Environ. Sci. by S Albrecht (2016)
  12. Jiang, F. et al. A two-terminal perovskite/perovskite tandem solar cell. J. Mater. Chem. A 4, 1208–1213 (2016). (10.1039/C5TA08744A) / J. Mater. Chem. A by F Jiang (2016)
  13. Hao, F., Stoumpos, C. C., Cao, D. H., Chang, R. P. & Kanatzidis, M. G. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photon. 8, 489–494 (2014). (10.1038/nphoton.2014.82) / Nat. Photon. by F Hao (2014)
  14. Umari, P., Mosconi, E. & De Angelis, F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 4, 4467 (2014). (10.1038/srep04467) / Sci. Rep. by P Umari (2014)
  15. Bernal, C. & Yang, K. First-principles hybrid functional study of the organic–inorganic perovskites CH3NH3SnBr3 and CH3NH3SnI3 . J. Phys. Chem. C 118, 24383–24388 (2014). (10.1021/jp509358f) / J. Phys. Chem. C by C Bernal (2014)
  16. Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013). (10.1021/ic401215x) / Inorg. Chem. by CC Stoumpos (2013)
  17. Liang, K., Mitzi, D. B. & Prikas, M. T. Synthesis and characterization of organic–inorganic perovskite thin films prepared using a versatile two-step dipping technique. Chem. Mater. 10, 403–411 (1998). (10.1021/cm970568f) / Chem. Mater. by K Liang (1998)
  18. Takahashi, Y. et al. Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity. Dalton Trans. 40, 5563–5568 (2011). (10.1039/c0dt01601b) / Dalton Trans. by Y Takahashi (2011)
  19. Li, H., Castelli, I. E., Thygesen, K. S. & Jacobsen, K. W. Strain sensitivity of band gaps of Sn-containing semiconductors. Phys. Rev. B 91, 045204 (2015). (10.1103/PhysRevB.91.045204) / Phys. Rev. B by H Li (2015)
  20. Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013). (10.1021/nl400349b) / Nano Lett. by JH Noh (2013)
  21. He, M., Zheng, D., Wang, M., Lin, C. & Lin, Z. High efficiency perovskite solar cells: from complex nanostructure to planar heterojunction. J. Mater. Chem. A 2, 5994–6003 (2014). (10.1039/C3TA14160H) / J. Mater. Chem. A by M He (2014)
  22. Cai, B., Xing, Y., Yang, Z., Zhang, W. H. & Qiu, J. High performance hybrid solar cells sensitized by organolead halide perovskites. Energy Environ. Sci. 6, 1480–1485 (2013). (10.1039/c3ee40343b) / Energy Environ. Sci. by B Cai (2013)
  23. De Wolf, S. et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014). (10.1021/jz500279b) / J. Phys. Chem. Lett. by S De Wolf (2014)
  24. Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015). (10.1039/C4SC03141E) / Chem. Sci. by ET Hoke (2015)
  25. Manser, J. S. & Kamat, P. V Band filling with free charge carriers in organometal halide perovskites. Nat. Photon. 8, 737–743 (2014). (10.1038/nphoton.2014.171) / Nat. Photon. by JS Manser (2014)
  26. Echendu, O. K., Fauzi, F., Weerasinghe, A. R. & Dharmadasa, I. M. High short-circuit current density CdTe solar cells using all-electrodeposited semiconductors. Thin Solid Films 556, 529–534 (2014). (10.1016/j.tsf.2014.01.071) / Thin Solid Films by OK Echendu (2014)
  27. McCarthy, M. A. et al. Reorientation of the high mobility plane in pentacene-based carbon nanotube enabled vertical field effect transistors. ACS Nano 5, 291–298 (2010). / ACS Nano by MA McCarthy (2010)
  28. Saliba, M. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016). (10.1126/science.aah5557) / Science by M Saliba (2016)
  29. Gibb, A. L. et al. Atomic resolution imaging of grain boundary defects in monolayer chemical vapor deposition-grown hexagonal boron nitride. J. Am. Chem. Soc. 135, 6758–6761 (2013). (10.1021/ja400637n) / J. Am. Chem. Soc. by AL Gibb (2013)
  30. Worsley, M. A. et al. Synthesis and characterization of highly crystalline graphene aerogels. ACS Nano 8, 11013–11022 (2014). (10.1021/nn505335u) / ACS Nano by MA Worsley (2014)
Dates
Type When
Created 8 years, 9 months ago (Nov. 7, 2016, 3:08 p.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 3:30 p.m.)
Indexed 2 months ago (June 26, 2025, 10:04 a.m.)
Issued 8 years, 9 months ago (Nov. 7, 2016)
Published 8 years, 9 months ago (Nov. 7, 2016)
Published Online 8 years, 9 months ago (Nov. 7, 2016)
Published Print 8 years, 3 months ago (May 1, 2017)
Funders 0

None

@article{Ergen_2016, title={Graded bandgap perovskite solar cells}, volume={16}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat4795}, DOI={10.1038/nmat4795}, number={5}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Ergen, Onur and Gilbert, S. Matt and Pham, Thang and Turner, Sally J. and Tan, Mark Tian Zhi and Worsley, Marcus A. and Zettl, Alex}, year={2016}, month=nov, pages={522–525} }