Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Bauer, J., Schroer, A., Schwaiger, R., & Kraft, O. (2016). Approaching theoretical strength in glassy carbon nanolattices. Nature Materials, 15(4), 438–443.

Authors 4
  1. J. Bauer (first)
  2. A. Schroer (additional)
  3. R. Schwaiger (additional)
  4. O. Kraft (additional)
References 50 Referenced 586
  1. Christensen, J., Kadic, M., Wegener, M. & Kraft, O. Vibrant times for mechanical metamaterials. MRS Commun. 5, 453–462 (2015). (10.1557/mrc.2015.51) / MRS Commun. by J Christensen (2015)
  2. Lee, J. H., Singer, J. P. & Thomas, E. L. Micro-/nanostructured mechanical metamaterials. Adv. Mater. 24, 4782–4810 (2012). (10.1002/adma.201201644) / Adv. Mater. by JH Lee (2012)
  3. Salari-Sharif, L., Schaedler, T. A. & Valdevit, L. Energy dissipation mechanisms in hollow metallic microlattices. J. Mater. Res. 29, 1755–1770 (2014). (10.1557/jmr.2014.226) / J. Mater. Res. by L Salari-Sharif (2014)
  4. Bückmann, T. et al. Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv. Mater. 24, 2710–2714 (2012). (10.1002/adma.201200584) / Adv. Mater. by T Bückmann (2012)
  5. Fleck, N. A., Deshpande, V. S. & Ashby, M. F. Micro-architectured materials: past, present and future. Proc. R. Soc. Lond. A 466, 2495–2516 (2010). (10.1098/rspa.2010.0215) / Proc. R. Soc. Lond. A by NA Fleck (2010)
  6. Jacobsen, A. J., Barvosa-Carter, W. & Nutt, S. Micro-scale Truss structures formed from self-propagating photopolymer waveguides. Adv. Mater. 19, 3892–3896 (2007). (10.1002/adma.200700797) / Adv. Mater. by AJ Jacobsen (2007)
  7. Zheng, X. et al. Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system. Rev. Sci. Instrum. 83, 125001 (2012). (10.1063/1.4769050) / Rev. Sci. Instrum. by X Zheng (2012)
  8. von Freymann, G. et al. Three-dimensional nanostructures for photonics. Adv. Funct. Mater. 20, 1038–1052 (2010). (10.1002/adfm.200901838) / Adv. Funct. Mater. by G von Freymann (2010)
  9. Arpin, K. A. et al. Multidimensional architectures for functional optical devices. Adv. Mater. 22, 1084–1101 (2010). (10.1002/adma.200904096) / Adv. Mater. by KA Arpin (2010)
  10. Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009). (10.1126/science.1177031) / Science by JK Gansel (2009)
  11. Fratzl, P. & Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007). (10.1016/j.pmatsci.2007.06.001) / Prog. Mater. Sci. by P Fratzl (2007)
  12. Schaedler, T. A. et al. Ultralight metallic microlattices. Science 334, 962–965 (2011). (10.1126/science.1211649) / Science by TA Schaedler (2011)
  13. Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014). (10.1126/science.1252291) / Science by X Zheng (2014)
  14. Jang, D., Meza, L. R., Greer, F. & Greer, J. R. Fabrication and deformation of three-dimensional hollow ceramic nanostructures. Nature Mater. 12, 893–898 (2013). (10.1038/nmat3738) / Nature Mater. by D Jang (2013)
  15. Bauer, J., Hengsbach, S., Tesari, I., Schwaiger, R. & Kraft, O. High-strength cellular ceramic composites with 3D microarchitecture. Proc. Natl Acad. Sci. USA 111, 2453–2458 (2014). (10.1073/pnas.1315147111) / Proc. Natl Acad. Sci. USA by J Bauer (2014)
  16. Meza, L. R., Das, S. & Greer, J. R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322–1326 (2014). (10.1126/science.1255908) / Science by LR Meza (2014)
  17. Gu, X. W. & Greer, J. R. Ultra-strong architected Cu meso-lattices. Extreme Mech. Lett. 2, 7–14 (2015). (10.1016/j.eml.2015.01.006) / Extreme Mech. Lett. by XW Gu (2015)
  18. George, T., Deshpande, V. S. & Wadley, H. N. G. Mechanical response of carbon fiber composite sandwich panels with pyramidal truss cores. Composites A 47, 31–40 (2013). (10.1016/j.compositesa.2012.11.011) / Composites A by T George (2013)
  19. Dong, L., Deshpande, V. & Wadley, H. Mechanical response of Ti–6Al–4V octet-truss lattice structures. Int. J. Solids Struct. 60, 107–124 (2015). (10.1016/j.ijsolstr.2015.02.020) / Int. J. Solids Struct. by L Dong (2015)
  20. Weiner, S. & Wagner, H. D. The material bone: structure-mechanical function relations. Annu. Rev. Mater. Sci. 28, 271–298 (1998). (10.1146/annurev.matsci.28.1.271) / Annu. Rev. Mater. Sci. by S Weiner (1998)
  21. Yilmaz, E. D., Bechtle, S., Özcoban, H., Schreyer, A. & Schneider, G. A. Fracture behavior of hydroxyapatite nanofibers in dental enamel under micropillar compression. Scr. Mater. 68, 404–407 (2013). (10.1016/j.scriptamat.2012.11.007) / Scr. Mater. by ED Yilmaz (2013)
  22. Meyers, M. A., Lin, A. Y.-M., Chen, P.-Y. & Muyco, J. Mechanical strength of abalone nacre: role of the soft organic layer. J. Mech. Behav. Biomed. Mater. 1, 76–85 (2008). (10.1016/j.jmbbm.2007.03.001) / J. Mech. Behav. Biomed. Mater. by MA Meyers (2008)
  23. Gao, H., Ji, B., Jaeger, I. L., Arzt, E. & Fratzl, P. Materials become insensitive to flaws at nanoscale: lesson from nature. Proc. Natl Acad. Sci. USA 100, 5597–5600 (2003). (10.1073/pnas.0631609100) / Proc. Natl Acad. Sci. USA by H Gao (2003)
  24. Zhu, T., Li, J., Ogata, S. & Yip, S. Mechanics of ultra-strength materials. MRS Bull. 34, 167–172 (2009). (10.1557/mrs2009.47) / MRS Bull. by T Zhu (2009)
  25. George, S. M. Atomic layer deposition: an overview. Chem. Rev. 110, 111–131 (2010). (10.1021/cr900056b) / Chem. Rev. by SM George (2010)
  26. Fischer, J. & Wegener, M. Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy. Opt. Mater. Express 1, 614–624 (2011). (10.1364/OME.1.000614) / Opt. Mater. Express by J Fischer (2011)
  27. Bauer, J. et al. Push-to-pull tensile testing of ultra-strong nanoscale ceramic-polymer composites made by additive manufacturing. Extreme Mech. Lett. 3, 105–112 (2015). (10.1016/j.eml.2015.03.006) / Extreme Mech. Lett. by J Bauer (2015)
  28. Schueller, O. & Brittain, S. Fabrication and characterization of glassy carbon MEMS. Chem. Mater. 4756, 1399–1406 (1997). (10.1021/cm960639v) / Chem. Mater. by O Schueller (1997)
  29. Wang, C., Jia, G., Taherabadi, L. H. & Madou, M. J. A novel method for the fabrication of high-aspect ratio C-MEMS structures. J. Microelectromech. Syst. 14, 348–358 (2005). (10.1109/JMEMS.2004.839312) / J. Microelectromech. Syst. by C Wang (2005)
  30. Lim, Y., Heo, J., Madou, M. & Shin, H. Monolithic carbon structures including suspended single nanowires and nanomeshes as a sensor platform. Nanoscale Res. Lett. 8, 492 (2013). (10.1186/1556-276X-8-492) / Nanoscale Res. Lett. by Y Lim (2013)
  31. Burckel, D. B. et al. Lithographically defined porous carbon electrodes. Small 5, 2792–2796 (2009). (10.1002/smll.200901084) / Small by DB Burckel (2009)
  32. Lee, J. H., Wang, L. F., Boyce, M. C. & Thomas, E. L. Periodic bicontinuous composites for high specific energy absorption. Nano Lett. 12, 4392–4396 (2012). (10.1021/nl302234f) / Nano Lett. by JH Lee (2012)
  33. Cowlard, F. C. & Lewis, J. C. Vitreous carbon—a new form of carbon. J. Mater. Sci. 2, 507–512 (1967). (10.1007/BF00752216) / J. Mater. Sci. by FC Cowlard (1967)
  34. Harris, P. J. F. Fullerene-related structure of commercial glassy carbons. Phil. Mag. 84, 3159–3167 (2004). (10.1080/14786430410001720363) / Phil. Mag. by PJF Harris (2004)
  35. Zhao, J. X., Bradt, R. C. & Walker, P. L. J. The fracture toughness of glassy carbons at elevated temperatures. Carbon N. Y. 23, 15–18 (1985). (10.1016/0008-6223(85)90190-3) / Carbon N. Y. by JX Zhao (1985)
  36. Mcaleavey, A., Coles, G., Edwards, R. L. & Sharpe, W. N. Mechanical properties of SU-8. MRS Proc. 546, 213–218 (1998). (10.1557/PROC-546-213) / MRS Proc. by A Mcaleavey (1998)
  37. Jacobsen, A. J., Mahoney, S., Carter, W. B. & Nutt, S. Vitreous carbon micro-lattice structures. Carbon N. Y. 49, 1025–1032 (2011). (10.1016/j.carbon.2010.10.059) / Carbon N. Y. by AJ Jacobsen (2011)
  38. Shin, S. J., Kucheyev, S. O., Worsley, M. A. & Hamza, A. V. Mechanical deformation of carbon-nanotube-based aerogels. Carbon N. Y. 50, 5340–5342 (2012). (10.1016/j.carbon.2012.06.044) / Carbon N. Y. by SJ Shin (2012)
  39. Deshpande, V. S. & Fleck, N. A. Collapse of truss core sandwich beams in 3-point bending. Int. J. Solids Struct. 38, 6275–6305 (2001). (10.1016/S0020-7683(01)00103-2) / Int. J. Solids Struct. by VS Deshpande (2001)
  40. Gibson, L. J. & Ashby, M. F. Cellular Solids: Structure and Properties Vol. 2, 2nd edn (Cambridge Univ. Press, 1999). / Cellular Solids: Structure and Properties by LJ Gibson (1999)
  41. Wadley, H. N. G. Multifunctional periodic cellular metals. Phil. Trans. R. Soc. Lond. A 364, 31–68 (2005). (10.1098/rsta.2005.1697) / Phil. Trans. R. Soc. Lond. A by HNG Wadley (2005)
  42. Berdova, M. et al. Mechanical assessment of suspended ALD thin films by bulge and shaft-loading techniques. Acta Mater. 66, 370–377 (2014). (10.1016/j.actamat.2013.11.024) / Acta Mater. by M Berdova (2014)
  43. Liu, A. ASM Handbook Volume 19, Fatigue And Fracture 980–1000 (ASM International, 1996). / ASM Handbook Volume 19, Fatigue And Fracture by A Liu (1996)
  44. Bullock, R. E. & Kaae, J. L. Size effect on the strength of glassy carbon. J. Mater. Sci. 14, 920–930 (1979). (10.1007/BF00550723) / J. Mater. Sci. by RE Bullock (1979)
  45. Kawamura, K. & Jenkins, G. A new glassy carbon fibre. J. Mater. Sci. 5, 262–267 (1970). (10.1007/BF00551003) / J. Mater. Sci. by K Kawamura (1970)
  46. Manoharan, M. P., Lee, H., Rajagopalan, R., Foley, H. C. & Haque, M. A. Elastic properties of 4–6 nm-thick glassy carbon thin films. Nanoscale Res. Lett. 5, 14–19 (2010). (10.1007/s11671-009-9435-2) / Nanoscale Res. Lett. by MP Manoharan (2010)
  47. Yakobson, B. I. & Avouris, P. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (eds Dresselhaus, M. S., Dresselhaus, G. & Avouris, P.) 287–327 (Springer, 2001). (10.1007/3-540-39947-X_12) / Carbon Nanotubes: Synthesis, Structure, Properties, and Applications by BI Yakobson (2001)
  48. Singh, A., Jayaram, J., Madou, M. & Akbar, S. Pyrolysis of negative photoresists to fabricate carbon structures for microelectromechanical systems and electrochemical applications. J. Electrochem. Soc. 149, 78–83 (2002). (10.1149/1.1436085) / J. Electrochem. Soc. by A Singh (2002)
  49. Kim, H.-J., Joo, Y.-H., Lee, S.-M. & Kim, C. Characteristics of photoresist-derived carbon nanofibers for Li-ion full cell electrode. Trans. Electr. Electron. Mater. 15, 265–269 (2014). (10.4313/TEEM.2014.15.5.265) / Trans. Electr. Electron. Mater. by H-J Kim (2014)
  50. Groner, M. D., Fabreguette, F. H., Elam, J. W. & George, S. M. Low-temperature Al2O3 atomic layer deposition. Chem. Mater. 16, 639–645 (2004). (10.1021/cm0304546) / Chem. Mater. by MD Groner (2004)
Dates
Type When
Created 9 years, 6 months ago (Feb. 1, 2016, 11:26 a.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 2:52 p.m.)
Indexed 57 minutes ago (Aug. 21, 2025, 5:58 a.m.)
Issued 9 years, 6 months ago (Feb. 1, 2016)
Published 9 years, 6 months ago (Feb. 1, 2016)
Published Online 9 years, 6 months ago (Feb. 1, 2016)
Published Print 9 years, 4 months ago (April 1, 2016)
Funders 0

None

@article{Bauer_2016, title={Approaching theoretical strength in glassy carbon nanolattices}, volume={15}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat4561}, DOI={10.1038/nmat4561}, number={4}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Bauer, J. and Schroer, A. and Schwaiger, R. and Kraft, O.}, year={2016}, month=feb, pages={438–443} }