Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Kalinin, S. V., Sumpter, B. G., & Archibald, R. K. (2015). Big–deep–smart data in imaging for guiding materials design. Nature Materials, 14(10), 973–980.

Authors 3
  1. Sergei V. Kalinin (first)
  2. Bobby G. Sumpter (additional)
  3. Richard K. Archibald (additional)
References 95 Referenced 305
  1. Hoddeson, M. R. a. L. Crystal Fire: The Invention of the Transistor and the Birth of the Information Age (W. W. Norton & Company, 1998). / Crystal Fire: The Invention of the Transistor and the Birth of the Information Age by MRaL Hoddeson (1998)
  2. Sze, S. M. Physics of Semiconductor Devices 2nd edn (Wiley-Interscience, 1981). / Physics of Semiconductor Devices by SM Sze (1981)
  3. Shockley, W. Electrons and Holes in Semiconductors: With Applications to Transistor Electronics (D. Van Nostrand, 1950). / Electrons and Holes in Semiconductors: With Applications to Transistor Electronics by W Shockley (1950)
  4. Fuechsle, M. et al. A single-atom transistor. Nature Nanotech. 7, 242–246 (2012). (10.1038/nnano.2012.21) / Nature Nanotech. by M Fuechsle (2012)
  5. Woodward, D. I., Knudsen, J. & Reaney, I. M. Review of crystal and domain structures in the PbZrxTi1–xO3 solid solution. Phys. Rev. B 72, 104110 (2005). (10.1103/PhysRevB.72.104110) / Phys. Rev. B by DI Woodward (2005)
  6. Vugmeister, B. E. Polarization dynamics and formation of polar nanoregions in relaxor ferroelectrics. Phys. Rev. B 73, 174117 (2006). (10.1103/PhysRevB.73.174117) / Phys. Rev. B by BE Vugmeister (2006)
  7. Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005). (10.1088/0022-3727/38/8/R01) / J. Phys. D by M Fiebig (2005)
  8. Binder, K. & Young, A. P. Spin-glasses—experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801–976 (1986). (10.1103/RevModPhys.58.801) / Rev. Mod. Phys. by K Binder (1986)
  9. Dagotto, E. Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005). (10.1126/science.1107559) / Science by E Dagotto (2005)
  10. Dagotto, E., Hotta, T. & Moreo, A. Colossal magnetoresistant materials: The key role of phase separation. Phys. Rep. 344, 1–153 (2001). (10.1016/S0370-1573(00)00121-6) / Phys. Rep. by E Dagotto (2001)
  11. Spaldin, N. A. & Fiebig, M. The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005). (10.1126/science.1113357) / Science by NA Spaldin (2005)
  12. Adler, S. B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 4791–4843 (2004). (10.1021/cr020724o) / Chem. Rev. by SB Adler (2004)
  13. Fischer, C. C., Tibbetts, K. J., Morgan, D. & Ceder, G. Predicting crystal structure by merging data mining with quantum mechanics. Nature Mater. 5, 641–646 (2006). (10.1038/nmat1691) / Nature Mater. by CC Fischer (2006)
  14. Curtarolo, S. et al. The high-throughput highway to computational materials design. Nature Mater. 12, 191–201 (2013). (10.1038/nmat3568) / Nature Mater. by S Curtarolo (2013)
  15. Crewe, A. V. Scanning electron microscopes—is high resolution possible. Science 154, 729–738 (1966). (10.1126/science.154.3750.729) / Science by AV Crewe (1966)
  16. Pennycook, S. J. & Nellist, P. D. (eds) Scanning Transmission Electron Microscopy: Imaging and Analysis (Springer, 2011). (10.1007/978-1-4419-7200-2) / Scanning Transmission Electron Microscopy: Imaging and Analysis by SJ Pennycook (2011)
  17. Ardenne, M. v. Das elektronen-rastermikroskop. Praktische Ausführung. Z. Tech. Phys. 19, 407–416 (1938). / Das elektronen-rastermikroskop. Praktische Ausführung. Z. Tech. Phys. by Mv Ardenne (1938)
  18. Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. 7 × 7 reconstruction on Si(111) resolved in real space. Phys. Rev. Lett. 50, 120–123 (1983). (10.1103/PhysRevLett.50.120) / Phys. Rev. Lett. by G Binnig (1983)
  19. Binnig, G. & Rohrer, H. Scanning tunneling microscopy. Helv. Phys. Acta 55, 726–735 (1982). / Helv. Phys. Acta by G Binnig (1982)
  20. Gerber, C. & Lang, H. P. How the doors to the nanoworld were opened. Nature Nanotech. 1, 3–5 (2006). (10.1038/nnano.2006.70) / Nature Nanotech. by C Gerber (2006)
  21. Pennycook, S. J. & Kalinin, S. V. Microscopy: Hasten high resolution. Nature 515, 487–488 (2014). (10.1038/515487a) / Nature by SJ Pennycook (2014)
  22. Van Tendeloo, G., Bals, S., Van Aert, S., Verbeeck, J. & Van Dyck, D. Advanced electron microscopy for advanced materials. Adv. Mater. 24, 5655–5675 (2012). (10.1002/adma.201202107) / Adv. Mater. by G Van Tendeloo (2012)
  23. Yankovich, A. B. et al. Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts. Nature Commun. 5, 4155 (2014). (10.1038/ncomms5155) / Nature Commun. by AB Yankovich (2014)
  24. Jia, C. L. et al. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nature Mater. 7, 57–61 (2008). (10.1038/nmat2080) / Nature Mater. by CL Jia (2008)
  25. Chang, H. J. et al. Atomically resolved mapping of polarization and electric fields across ferroelectric/oxide interfaces by Z-contrast imaging. Adv. Mater. 23, 2474–2479 (2011). (10.1002/adma.201004641) / Adv. Mater. by HJ Chang (2011)
  26. Nelson, C. T. et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11, 828–834 (2011). (10.1021/nl1041808) / Nano Lett. by CT Nelson (2011)
  27. Chisholm, M. F., Luo, W. D., Oxley, M. P., Pantelides, S. T. & Lee, H. N. Atomic-scale compensation phenomena at polar interfaces. Phys. Rev. Lett. 105, 197602 (2010). (10.1103/PhysRevLett.105.197602) / Phys. Rev. Lett. by MF Chisholm (2010)
  28. Borisevich, A. et al. Mapping octahedral tilts and polarization across a domain wall in BiFeO3 from Z-contrast scanning transmission electron microscopy image atomic column shape analysis. ACS Nano 4, 6071–6079 (2010). (10.1021/nn1011539) / ACS Nano by A Borisevich (2010)
  29. Jia, C. L. et al. Oxygen octahedron reconstruction in the SrTiO3/LaAlO3 heterointerfaces investigated using aberration-corrected ultrahigh-resolution transmission electron microscopy. Phys. Rev. B 79, 081405 (2009). (10.1103/PhysRevB.79.081405) / Phys. Rev. B by CL Jia (2009)
  30. Kim, Y. M. et al. Probing oxygen vacancy concentration and homogeneity in solid-oxide fuel-cell cathode materials on the subunit-cell level. Nature Mater. 11, 888–894 (2012). (10.1038/nmat3393) / Nature Mater. by YM Kim (2012)
  31. Van Aert, S., Van Dyck, D. & den Dekker, A. J. Resolution of coherent and incoherent imaging systems reconsidered—Classical criteria and a statistical alternative. Opt. Express 14, 3830–3839 (2006). (10.1364/OE.14.003830) / Opt. Express by S Van Aert (2006)
  32. Van Aert, S., den Dekker, A. J., Van Dyck, D. & van den Bos, A. High-resolution electron microscopy and electron tomography: Resolution versus precision. J. Struct. Biol. 138, 21–33 (2002). (10.1016/S1047-8477(02)00016-3) / J. Struct. Biol. by S Van Aert (2002)
  33. Pan, S. H. et al. Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+δ . Nature 403, 746–750 (2000). (10.1038/35001534) / Nature by SH Pan (2000)
  34. Roushan, P. et al. Topological surface states protected from backscattering by chiral spin texture. Nature 460, 1106–1109 (2009). (10.1038/nature08308) / Nature by P Roushan (2009)
  35. Lin, J. H. et al. Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers. Nature Nanotech. 9, 436–442 (2014). (10.1038/nnano.2014.81) / Nature Nanotech. by JH Lin (2014)
  36. Ishikawa, R. et al. Direct observation of dopant atom diffusion in a bulk semiconductor crystal enhanced by a large size mismatch. Phys. Rev. Lett. 113, 155501 (2014). (10.1103/PhysRevLett.113.155501) / Phys. Rev. Lett. by R Ishikawa (2014)
  37. Huang, P. Y. et al. Imaging atomic rearrangements in two-dimensional silica glass: Watching silica's dance. Science 342, 224–227 (2013). (10.1126/science.1242248) / Science by PY Huang (2013)
  38. Zheng, H. M. et al. Observation of transient structural-transformation dynamics in a Cu2S nanorod. Science 333, 206–209 (2011). (10.1126/science.1204713) / Science by HM Zheng (2011)
  39. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990). (10.1038/344524a0) / Nature by DM Eigler (1990)
  40. Garcia, R., Knoll, A. W. & Riedo, E. Advanced scanning probe lithography. Nature Nanotech. 9, 577–587 (2014). (10.1038/nnano.2014.157) / Nature Nanotech. by R Garcia (2014)
  41. Balke, N., Bdikin, I., Kalinin, S. V. & Kholkin, A. L. Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: State of the art and prospects for the future. J. Am. Ceram. Soc. 92, 1629–1647 (2009). (10.1111/j.1551-2916.2009.03240.x) / J. Am. Ceram. Soc. by N Balke (2009)
  42. Runkler, T. A. Data Analytics: Models and Algorithms for Intelligent Data Analysis (Vieweg, 2012). (10.1007/978-3-8348-2589-6) / Data Analytics: Models and Algorithms for Intelligent Data Analysis by TA Runkler (2012)
  43. Bonnet, N. in Advances in Imaging and Electron Physics Vol. 114 (ed. P. W. Hawkes) 1–77 (Elsevier Academic Press, 2000). / Advances in Imaging and Electron Physics by N Bonnet (2000)
  44. Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference and Prediction 2nd edn (Springer, 2009). (10.1007/978-0-387-84858-7) / The Elements of Statistical Learning: Data Mining, Inference and Prediction by T Hastie (2009)
  45. Belianinov, A. et al. Big data and deep data in scanning and electron microscopies: Deriving functionality from multidimensional data sets. Adv. Struct. Chem. Imaging 1, 1–25 (2015). (10.1186/s40679-014-0002-2) / Adv. Struct. Chem. Imaging by A Belianinov (2015)
  46. Parr, R. G. & Weitao, Y. Density-Functional Theory of Atoms and Molecules (Oxford Univ. Press, 1994). / Density-Functional Theory of Atoms and Molecules by RG Parr (1994)
  47. Sumpter, B. G. & Noid, D. W. On the design, analysis, and characterization of materials using computational neural networks. Annu. Rev. Mater. Sci. 26, 223–277 (1996). (10.1146/annurev.ms.26.080196.001255) / Annu. Rev. Mater. Sci. by BG Sumpter (1996)
  48. Sumpter, B. G., Getino, C. & Noid, D. W. Theory and applications of neural computing in chemical science. Annu. Rev. Phys. Chem. 45, 439–481 (1994). (10.1146/annurev.pc.45.100194.002255) / Annu. Rev. Phys. Chem. by BG Sumpter (1994)
  49. Phillips, J. C. & Rabe, K. M. Transport anomalies and internal structural models of stable quasi-crystals. Phys. Rev. Lett. 66, 923–925 (1991). (10.1103/PhysRevLett.66.923) / Phys. Rev. Lett. by JC Phillips (1991)
  50. Villars, P., Phillips, J. C. & Chen, H. S. Icosahedral quasi-crystals and quantum structural diagrams. Phys. Rev. Lett. 57, 3085–3088 (1986). (10.1103/PhysRevLett.57.3085) / Phys. Rev. Lett. by P Villars (1986)
  51. Dongarra, J. et al. The International Exascale Software Project roadmap. Int. J. High Perform. Comput. Appl. 25, 3–60 (2011). (10.1177/1094342010391989)
  52. Materials Genome Initiative; http://go.nature.com/Rkw2mj
  53. The Materials Project; https://www.materialsproject.org
  54. Jain, A. et al. A high-throughput infrastructure for density functional theory calculations. Comput. Mater. Sci. 50, 2295–2310 (2011). (10.1016/j.commatsci.2011.02.023) / Comput. Mater. Sci. by A Jain (2011)
  55. Jain, A. et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013). (10.1063/1.4812323) / APL Mater. by A Jain (2013)
  56. AFLOW; http://materials.duke.edu/aflow.html
  57. Setyawan, W. & Curtarolo, S. High-throughput electronic band structure calculations: Challenges and tools. Comput. Mater. Sci. 49, 299–312 (2010). (10.1016/j.commatsci.2010.05.010) / Comput. Mater. Sci. by W Setyawan (2010)
  58. Ramakrishnan, R., Dral, P. O., Rupp, M. & von Lilienfeld, O. A. Quantum chemistry structures and properties of 134 kilo molecules. Scientific Data 1, 140022 (2014). (10.1038/sdata.2014.22) / Scientific Data by R Ramakrishnan (2014)
  59. Sohlberg, K., Rashkeev, S., Borisevich, A. Y., Pennycook, S. J. & Pantelides, S. T. Origin of anomalous Pt-Pt distances in the Pt/alumina catalytic system. ChemPhysChem 5, 1893–1897 (2004). (10.1002/cphc.200400212) / ChemPhysChem by K Sohlberg (2004)
  60. Bachelet, G. B. & Schluter, M. Relativistic norm-conserving pseudopotentials. Phys. Rev. B 25, 2103–2108 (1982). (10.1103/PhysRevB.25.2103) / Phys. Rev. B by GB Bachelet (1982)
  61. von Lilienfeld, O. A., Tavernelli, I., Rothlisberger, U. & Sebastiani, D. Optimization of effective atom centered potentials for London dispersion forces in density functional theory. Phys. Rev. Lett. 93, 153004 (2004). (10.1103/PhysRevLett.93.153004) / Phys. Rev. Lett. by OA von Lilienfeld (2004)
  62. Baumeier, B., Kruger, P. & Pollmann, J. Self-interaction-corrected pseudopotentials for silicon carbide. Phys. Rev. B 73, 195205 (2006). (10.1103/PhysRevB.73.195205) / Phys. Rev. B by B Baumeier (2006)
  63. von Lilienfeld, O. A. & Schultz, P. A. Structure and band gaps of Ga-(V) semiconductors: The challenge of Ga pseudopotentials. Phys. Rev. B 77, 115202 (2008). (10.1103/PhysRevB.77.115202) / Phys. Rev. B by OA von Lilienfeld (2008)
  64. von Lilienfeld, O. A. Force correcting atom centred potentials for generalised gradient approximated density functional theory: Approaching hybrid functional accuracy for geometries and harmonic frequencies in small chlorofluorocarbons. Mol. Phys. 111, 2147–2153 (2013). (10.1080/00268976.2013.793834) / Mol. Phys. by OA von Lilienfeld (2013)
  65. Zhou, F., Cococcioni, M., Marianetti, C. A., Morgan, D. & Ceder, G. First-principles prediction of redox potentials in transition-metal compounds with LDA + U. Phys. Rev. B 70, 235121 (2004). (10.1103/PhysRevB.70.235121) / Phys. Rev. B by F Zhou (2004)
  66. Marzouk, Y. M., Najm, H. N. & Rahn, L. A. Stochastic spectral methods for efficient Bayesian solution of inverse problems. J. Comp. Phys. 224, 560–586 (2007). (10.1016/j.jcp.2006.10.010) / J. Comp. Phys. by YM Marzouk (2007)
  67. Marzouk, Y. & Xiu, D. A stochastic collocation approach to Bayesian inference in inverse problems. Commun. Computational Phys. 6, 826–847 (2009). (10.4208/cicp.2009.v6.p826) / Commun. Computational Phys. by Y Marzouk (2009)
  68. Howson, C. & Urbach, P. Scientific Reasoning: The Bayesian Approach (Open Court, 2006). / Scientific Reasoning: The Bayesian Approach by C Howson (2006)
  69. Robert, C. The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation (Springer Texts in Statistics) (Springer, 2001). / The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation by C Robert (2001)
  70. Lingerfelt, E. J., Messer, O. E. B., Desai, S. S., Holt, C. A. & Lentz, E. J. Near real-time data analysis of core-collapse supernova simulations with Bellerophon. Procedia Comput. Sci. 29, 1504–1514 (2014). (10.1016/j.procs.2014.05.136) / Procedia Comput. Sci. by EJ Lingerfelt (2014)
  71. Rupp, M., Tkatchenko, A., Muller, K. R. & von Lilienfeld, O. A. Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108, 058301 (2012). (10.1103/PhysRevLett.108.058301) / Phys. Rev. Lett. by M Rupp (2012)
  72. Montavon, G. et al. Machine learning of molecular electronic properties in chemical compound space. New J. Phys. 15, 095003 (2013). (10.1088/1367-2630/15/9/095003) / New J. Phys. by G Montavon (2013)
  73. Lopez-Bezanilla, A. & von Lilienfeld, O. A. Modeling electronic quantum transport with machine learning. Phys. Rev. B 89, 235411 (2014). (10.1103/PhysRevB.89.235411) / Phys. Rev. B by A Lopez-Bezanilla (2014)
  74. Ramakrishnan, R., Dral, P. O., Rupp, M. & Anatole von Lilienfeld, O. Big data meets quantum chemistry approximations: The Δ-machine learning approach. J. Chem Theory Comput. 11, 2087–2096 (2015). (10.1021/acs.jctc.5b00099) / J. Chem Theory Comput. by R Ramakrishnan (2015)
  75. Pyzer-Knapp, E. O., Suh, C., Gómez-Bombarelli, R., Aguilera-Iparraguirre, J. & Aspuru-Guzik, A. What is high throughput virtual screening? A perspective from organic materials discovery. Annu. Rev. Mater. Sci. 45, 195–216 (2015). (10.1146/annurev-matsci-070214-020823) / Annu. Rev. Mater. Sci. by EO Pyzer-Knapp (2015)
  76. Hachmann, J. et al. Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry—the Harvard Clean Energy Project. Energy Environ. Sci. 7, 698–704 (2014). (10.1039/C3EE42756K) / Energy Environ. Sci. by J Hachmann (2014)
  77. Bartok, A. P., Gillan, M. J., Manby, F. R. & Csanyi, G. Machine-learning approach for one- and two-body corrections to density functional theory: Applications to molecular and condensed water. Phys. Rev. B 88, 054104 (2013). (10.1103/PhysRevB.88.054104) / Phys. Rev. B by AP Bartok (2013)
  78. Machta, B. B., Chachra, R., Transtrum, M. K. & Sethna, J. P. Parameter space compression underlies emergent theories and predictive models. Science 342, 604–607 (2013). (10.1126/science.1238723) / Science by BB Machta (2013)
  79. Katsoulakis, M. A. & Plechac, P. Information-theoretic tools for parametrized coarse-graining of non-equilibrium extended systems. J. Chem. Phys. 139, 074115 (2013). (10.1063/1.4818534) / J. Chem. Phys. by MA Katsoulakis (2013)
  80. Materials Genome Initiative Strategic Plan; http://www.nist.gov/mgi/upload/MGI-StrategicPlan-2014.pdf
  81. Spiegelhalter, D. The future lies in uncertainty. Science 345, 264–265 (2014). (10.1126/science.1251122) / Science by D Spiegelhalter (2014)
  82. Ovsjanikov, M., Bronstein, A. M., Bronstein, M. M. & Guibas, L. J. Shape Google: a computer vision approach to invariant shape retrieval. Proc. NORDIA 1, 1 (2009). / Proc. NORDIA by M Ovsjanikov (2009)
  83. Zhu, J., Ferguson, D. I. & Dolgov, D. A. System and method for predicting behaviors of detected objects. US patent 8660734 B2 (2014).
  84. Tourassi, G. D., Vargas-Voracek, R., Catarious, D. M. & Floyd, C. E. Computer-assisted detection of mammographic masses: A template matching scheme based on mutual information. Med. Phys. 30, 2123–2130 (2003). (10.1118/1.1589494) / Med. Phys. by GD Tourassi (2003)
  85. Scharcanski, J. & Celebi, M. E. (eds) Computer Vision Techniques for the Diagnosis of Skin Cancer (Springer, 2013). / Computer Vision Techniques for the Diagnosis of Skin Cancer by J Scharcanski (2013)
  86. Mody, C. C. M. Instrumental Community (The MIT Press, 2011). (10.7551/mitpress/9780262134941.001.0001) / Instrumental Community by CCM Mody (2011)
  87. Reed, J. W. et al. TF-ICF: A new term weighting scheme for clustering dynamic data streams. 5th Int. Conf. Machine Learning Appl. 258–263 (IEEE, 2006). / 5th Int. Conf. Machine Learning Appl. by JW Reed (2006)
  88. http://cda.ornl.gov/piranha.shtml
  89. Bollen, J. et al. Clickstream data yields high-resolution maps of science. PLoS ONE 4, e4803 (2009). (10.1371/journal.pone.0004803) / PLoS ONE by J Bollen (2009)
  90. Aiello, L. M., Schifanella, R. & State, B. Reading the source code of social ties. Preprint at http://arXiv.org/abs/1407.5547v1 (2014). (10.1145/2615569.2615672)
  91. He, Q., Woo, J., Belianinov, A., Guliants, V. V. & Borisevich, A. Y. Better catalysts through microscopy: Mesoscale M1/M2 intergrowth in molybdenum-vanadium based complex oxide catalysts for propane ammoxidation. ACS Nano 9, 3470–3478 (2015). (10.1021/acsnano.5b00271) / ACS Nano by Q He (2015)
  92. Lin, W. Z. et al. Direct probe of interplay between local structure and superconductivity in FeTe0.55Se0.45 . ACS Nano 7, 2634–2641 (2013). (10.1021/nn400012q) / ACS Nano by WZ Lin (2013)
  93. Tselev, A. et al. Oxygen control of atomic structure and physical properties of SrRuO3 surfaces. ACS Nano 7, 4403–4413 (2013). (10.1021/nn400923n) / ACS Nano by A Tselev (2013)
  94. Cruz-Silva, E. et al. Edge-edge interactions in stacked graphene nanoplatelets. ACS Nano 7, 2834–2841 (2013). (10.1021/nn4004204) / ACS Nano by E Cruz-Silva (2013)
  95. Romo-Herrera, J. M., Terrones, M., Terrones, H., Dag, S. & Meunier, V. Covalent 2D and 3D networks from 1D nanostructures: Designing new materials. Nano Lett. 7, 570–576 (2007). (10.1021/nl0622202) / Nano Lett. by JM Romo-Herrera (2007)
Dates
Type When
Created 9 years, 11 months ago (Sept. 23, 2015, 1:28 a.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 3:16 p.m.)
Indexed 3 weeks, 4 days ago (Aug. 7, 2025, 5:02 a.m.)
Issued 9 years, 11 months ago (Sept. 23, 2015)
Published 9 years, 11 months ago (Sept. 23, 2015)
Published Online 9 years, 11 months ago (Sept. 23, 2015)
Published Print 9 years, 11 months ago (Oct. 1, 2015)
Funders 0

None

@article{Kalinin_2015, title={Big–deep–smart data in imaging for guiding materials design}, volume={14}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat4395}, DOI={10.1038/nmat4395}, number={10}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Kalinin, Sergei V. and Sumpter, Bobby G. and Archibald, Richard K.}, year={2015}, month=sep, pages={973–980} }