Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Zhu, Y., Withers, R. L., Bourgeois, L., Dwyer, C., & Etheridge, J. (2015). Direct mapping of Li-enabled octahedral tilt ordering and associated strain in nanostructured perovskites. Nature Materials, 14(11), 1142–1149.

Authors 5
  1. Ye Zhu (first)
  2. Ray L. Withers (additional)
  3. Laure Bourgeois (additional)
  4. Christian Dwyer (additional)
  5. Joanne Etheridge (additional)
References 50 Referenced 31
  1. Koehler, J. S. Attempt to design a strong solid. Phys. Rev. B 2, 547–551 (1970). (10.1103/PhysRevB.2.547) / Phys. Rev. B by JS Koehler (1970)
  2. Esaki, L. & Tsu, R. Superlattice and negative differential conductivity in semiconductors. IBM J. Res. Dev. 14, 61–65 (1970). (10.1147/rd.141.0061) / IBM J. Res. Dev. by L Esaki (1970)
  3. Grahn, H. T. Semiconductor Superlattices (World Scientific, 1995). (10.1142/2566) / Semiconductor Superlattices by HT Grahn (1995)
  4. Rijnders, G. & Blank, D. H. A. Build your own superlattice. Nature 433, 369–370 (2005). (10.1038/433369a) / Nature by G Rijnders (2005)
  5. Lee, H. N., Christen, H. M., Chisholm, M. F., Rouleau, C. M. & Lowndes, D. H. Strong polarization enhancement in asymmetric three-component ferroelectric superlattices. Nature 433, 395–399 (2005). (10.1038/nature03261) / Nature by HN Lee (2005)
  6. Tenne, D. A. A. et al. Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy. Science 313, 1614–1616 (2006). (10.1126/science.1130306) / Science by DAA Tenne (2006)
  7. Watanabe, H., Nebel, C. E. & Shikata, S. Isotopic homojunction band engineering from diamond. Science 324, 1425–1428 (2009). (10.1126/science.1172419) / Science by H Watanabe (2009)
  8. Ravichandran, J. et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nature Mater. 13, 168–172 (2014). (10.1038/nmat3826) / Nature Mater. by J Ravichandran (2014)
  9. Gorbachev, R. V. et al. Detecting topological currents in graphene superlattices. Science 346, 448–451 (2014). (10.1126/science.1254966) / Science by RV Gorbachev (2014)
  10. Yeo, S. et al. Solid state self-assembly of nanocheckerboards. Appl. Phys. Lett. 89, 233120 (2006). (10.1063/1.2402115) / Appl. Phys. Lett. by S Yeo (2006)
  11. Guiton, B. S. & Davies, P. K. Nano-chessboard superlattices formed by spontaneous phase separation in oxides. Nature Mater. 6, 586–591 (2007). (10.1038/nmat1953) / Nature Mater. by BS Guiton (2007)
  12. MacManus-Driscoll, J. L. et al. Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nature Mater. 7, 314–320 (2008). (10.1038/nmat2124) / Nature Mater. by JL MacManus-Driscoll (2008)
  13. Ni, Y. & Khachaturyan, A. G. From chessboard tweed to chessboard nanowire structure during pseudospinodal decomposition. Nature Mater. 8, 410–414 (2009). (10.1038/nmat2431) / Nature Mater. by Y Ni (2009)
  14. Moshnyaga, V. et al. Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1−x:(MgO)x nanocomposite films. Nature Mater. 2, 247–252 (2003). (10.1038/nmat859) / Nature Mater. by V Moshnyaga (2003)
  15. Zheng, H. et al. Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303, 661–663 (2004). (10.1126/science.1094207) / Science by H Zheng (2004)
  16. Zheng, H. M. et al. Self-assembled growth of BiFeO3–CoFe2O4 nanostructures. Adv. Mater. 18, 2747–2752 (2006). (10.1002/adma.200601215) / Adv. Mater. by HM Zheng (2006)
  17. Zhang, C. L. et al. Magnetic nanocheckerboards with tunable sizes in the Mn-doped CoFe2O4 spinel. Appl. Phys. Lett. 91, 233110 (2007). (10.1063/1.2821838) / Appl. Phys. Lett. by CL Zhang (2007)
  18. Robertson, A. D., Garcia Martin, S., Coats, A. & West, A. R. Phase diagrams and crystal chemistry in the Li+ ion conducting perovskites, Li0.5−3xRE0.5+xTiO3 : RE = La, Nd. J. Mater. Chem. 5, 1405–1412 (1995). (10.1039/JM9950501405) / J. Mater. Chem. by AD Robertson (1995)
  19. Garcia-Martin, S., Garcia-Alvarado, F., Robertson, A. D., West, A. R. & Alario-Franco, M. A. Microstructural study of the Li+ ion substituted perovskites Li0.5−3xNd0.5+xTiO3 . J. Solid State Chem. 128, 97–101 (1997). (10.1006/jssc.1996.7173) / J. Solid State Chem. by S Garcia-Martin (1997)
  20. Withers, R. L. et al. Chessboard/diamond nanostructures and the A-site deficient, Li1/2−3xNd1/2+xTiO3, defect perovskite solid solution. Chem. Mater. 25, 190 − 201 (2013). (10.1021/cm303239d) / Chem. Mater. by RL Withers (2013)
  21. Guiton, B. & Davies, P. K. Spontaneous compositional nanopatterning in Li-containing perovskite oxides. J. Am. Chem. Soc. 130, 17168–17173 (2008). (10.1021/ja806130u) / J. Am. Chem. Soc. by B Guiton (2008)
  22. Lu, J. B. et al. Phase separation, cation ordering and nano-structural complexities in Nd2/3−xLi3xTiO3 with x = 0.14. J. Solid State Chem. 181, 3194–3199 (2008). (10.1016/j.jssc.2008.08.016) / J. Solid State Chem. by JB Lu (2008)
  23. Abakumov, A. M. et al. Frustrated octahedral tilting distortion in the incommensurately modulated Li3xNd2/3−xTiO3 perovskites. Chem. Mater. 25, 2670–2683 (2013). (10.1021/cm4012052) / Chem. Mater. by AM Abakumov (2013)
  24. Erni, R. et al. Nanoscale phase separation in perovskites revisited. Nature Mater. 13, 216–217 (2014). (10.1038/nmat3865) / Nature Mater. by R Erni (2014)
  25. Guiton, B. S. & Davies, P. K. Nanoscale phase separation in perovskites revisited. Nature Mater. 13, 217–218 (2014). (10.1038/nmat3866) / Nature Mater. by BS Guiton (2014)
  26. Azough, F., Kepaptsoglou, D. M., Ramasse, Q. M., Schaffer, B. & Freer, R. On the origin of nanochessboard super-lattices in A-site-deficient Ca-stabilized Nd2/3TiO3 . Chem. Mater. 27, 497–507 (2015). (10.1021/cm5036985) / Chem. Mater. by F Azough (2015)
  27. Spence, J. C. H. High Resolution Electron Microscopy 4th edn (Oxford Univ. Press, 2013). (10.1093/acprof:oso/9780199668632.001.0001) / High Resolution Electron Microscopy by JCH Spence (2013)
  28. Jia, C. L., Lentzen, M. & Urban, K. Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299, 870–873 (2003). (10.1126/science.1079121) / Science by CL Jia (2003)
  29. Jia, C. L. et al. Oxygen octahedron reconstruction in the SrTiO3/LaAlO3 heterointerfaces investigated using aberration-corrected ultrahigh-resolution transmission electron microscopy. Phys. Rev. B 79, 081405 (2009). (10.1103/PhysRevB.79.081405) / Phys. Rev. B by CL Jia (2009)
  30. Borisevich, A. Y. et al. Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. Phys. Rev. Lett. 105, 087204 (2010). (10.1103/PhysRevLett.105.087204) / Phys. Rev. Lett. by AY Borisevich (2010)
  31. Chisholm, M. F., Luo, W., Oxley, M. P., Pantelides, S. T. & Lee, H. N. Atomic-scale compensation phenomena at polar interfaces. Phys. Rev. Lett. 105, 197602 (2010). (10.1103/PhysRevLett.105.197602) / Phys. Rev. Lett. by MF Chisholm (2010)
  32. Findlay, S. D. et al. Robust atomic resolution imaging of light elements using scanning transmission electron microscopy. Appl. Phys. Lett. 95, 191913 (2009). (10.1063/1.3265946) / Appl. Phys. Lett. by SD Findlay (2009)
  33. Aso, R., Kan, D., Shimakawa, Y. & Kurata, H. Atomic level observation of octahedral distortions at the perovskite oxide heterointerface. Sci. Rep. 3, 2214 (2013). (10.1038/srep02214) / Sci. Rep. by R Aso (2013)
  34. Ohtsuka, M., Yamazaki, T., Kotaka, Y., Hashimoto, I. & Watanabe, K. Imaging of light and heavy atomic columns by spherical aberration corrected middle-angle bright-field STEM. Ultramicroscopy 120, 48–55 (2012). (10.1016/j.ultramic.2012.06.006) / Ultramicroscopy by M Ohtsuka (2012)
  35. Findlay, S. D., Kohno, Y., Cardamone, L. A., Ikuhara, Y. & Shibata, N. Enhanced light element imaging in atomic resolution scanning transmission electron microscopy. Ultramicroscopy 136, 31–41 (2014). (10.1016/j.ultramic.2013.07.019) / Ultramicroscopy by SD Findlay (2014)
  36. Dwyer, C. Simulation of scanning transmission electron microscope images on desktop computers. Ultramicroscopy 110, 195–198 (2010). (10.1016/j.ultramic.2009.11.009) / Ultramicroscopy by C Dwyer (2010)
  37. Glazer, A. M. The classification of tilted octahedra in perovskites. Acta Crystallogr. B 28, 3384–3392 (1972). (10.1107/S0567740872007976) / Acta Crystallogr. B by AM Glazer (1972)
  38. Hÿtch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998). (10.1016/S0304-3991(98)00035-7) / Ultramicroscopy by MJ Hÿtch (1998)
  39. King, G., García-Martín, S. & Woodward, P. M. Octahedral tilt twinning and compositional modulation in NaLaMgWO6 . Acta Crystallogr. B 65, 676–683 (2009). (10.1107/S0108768109032728) / Acta Crystallogr. B by G King (2009)
  40. García-Martín, S., King, G., Urones-Garrote, E., Néner, G. & Woodward, P. M. Spontaneous superlattice formation in the doubly ordered perovskite KLaMnWO6 . Chem. Mater. 23, 163–170 (2011). (10.1021/cm102592p) / Chem. Mater. by S García-Martín (2011)
  41. García-Martín, S., King, G., Nénert, G., Ritter, C. & Woodward, P. M. The incommensurately modulated structures of the perovskites NaCeMnWO6 and NaPrMnWO6 . Inorg. Chem. 51, 4007–4014 (2012). (10.1021/ic202071n) / Inorg. Chem. by S García-Martín (2012)
  42. Woodward, P. M. Octahedral tilting in perovskites. I. Geometrical considerations. Acta Crystallogr. B 53, 32–43 (1997). (10.1107/S0108768196010713) / Acta Crystallogr. B by PM Woodward (1997)
  43. Reaney, I. M., Colla, E. L. & Setter, N. Dielectric and structural characteristics of Ba- and Sr-based complex perovskites as a function of tolerance factor. Jpn. J. Appl. Phys. 33, 3984–3990 (1994). (10.1143/JJAP.33.3984) / Jpn. J. Appl. Phys. by IM Reaney (1994)
  44. Woodward, P. M. Octahedral tilting in perovskites. II. Structure stabilizing forces. Acta Crystallogr. B 53, 44–66 (1997). (10.1107/S0108768196012050) / Acta Crystallogr. B by PM Woodward (1997)
  45. García-Martín, S. & Alario-Franco, M. Á. Modulated structure of La1/3−xLi3xNbO30 ≤ x ≤ 0.06 perovskite-related materials. J. Solid State Chem. 148, 93–99 (1999). (10.1006/jssc.1999.8377) / J. Solid State Chem. by S García-Martín (1999)
  46. Rondinelli, J. M. & Spaldin, N. A. Structure and properties of functional oxide thin films: Insights from electronic-structure calculations. Adv. Mater. 23, 3363–3381 (2011). (10.1002/adma.201101152) / Adv. Mater. by JM Rondinelli (2011)
  47. Howard, C. J. & Stokes, H. T. Group-theoretical analysis of octahedral tilting in perovskites. Acta Crystallogr. B 54, 782–789 (1998). (10.1107/S0108768198004200) / Acta Crystallogr. B by CJ Howard (1998)
  48. Knapp, M. C. & Woodward, P. M. A-site cation ordering in AA′BB′O6 perovskites. J. Solid State Chem. 179, 1076–1085 (2006). (10.1016/j.jssc.2006.01.005) / J. Solid State Chem. by MC Knapp (2006)
  49. García-Martín, S., Rojo, J. M., Tsukamoto, H., Morán, E. & Alario-Franco, M. Á. Lithium-ion conductivity in the novel La1/3−xLi3xNbO3 solid solution with perovskite-related structure. Solid State Ion. 116, 11–18 (1999). (10.1016/S0167-2738(98)00266-5) / Solid State Ion. by S García-Martín (1999)
  50. Gao, X. et al. Lithium atom and A-site vacancy distributions in lanthanum lithium titanate. Chem. Mater. 25, 1607–1614 (2013). (10.1021/cm3041357) / Chem. Mater. by X Gao (2013)
Dates
Type When
Created 9 years, 11 months ago (Aug. 31, 2015, 1:19 p.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 3:20 p.m.)
Indexed 4 days, 3 hours ago (Aug. 19, 2025, 6:23 a.m.)
Issued 9 years, 11 months ago (Aug. 31, 2015)
Published 9 years, 11 months ago (Aug. 31, 2015)
Published Online 9 years, 11 months ago (Aug. 31, 2015)
Published Print 9 years, 9 months ago (Nov. 1, 2015)
Funders 0

None

@article{Zhu_2015, title={Direct mapping of Li-enabled octahedral tilt ordering and associated strain in nanostructured perovskites}, volume={14}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat4390}, DOI={10.1038/nmat4390}, number={11}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Zhu, Ye and Withers, Ray L. and Bourgeois, Laure and Dwyer, Christian and Etheridge, Joanne}, year={2015}, month=aug, pages={1142–1149} }