Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Xu, R., Liu, S., Grinberg, I., Karthik, J., Damodaran, A. R., Rappe, A. M., & Martin, L. W. (2014). Ferroelectric polarization reversal via successive ferroelastic transitions. Nature Materials, 14(1), 79–86.

Authors 7
  1. Ruijuan Xu (first)
  2. Shi Liu (additional)
  3. Ilya Grinberg (additional)
  4. J. Karthik (additional)
  5. Anoop R. Damodaran (additional)
  6. Andrew M. Rappe (additional)
  7. Lane W. Martin (additional)
References 50 Referenced 236
  1. Hoffman, J. et al. Ferroelectric field effect transistors for memory applications. Adv. Mater. 22, 2957–2961 (2010). (10.1002/adma.200904327) / Adv. Mater. by J Hoffman (2010)
  2. Scott, J. F. Applications of modern ferroelectrics. Science 315, 954–959 (2012). (10.1126/science.1129564) / Science by JF Scott (2012)
  3. Eom, C. B. & Trolier-McKinstry, S. Thin-film piezoelectric MEMS. MRS Bull. 37, 1007–1021 (2012). (10.1557/mrs.2012.273) / MRS Bull. by CB Eom (2012)
  4. Wessels, B. W. Ferroelectric epitaxial thin-films for integrated optics. Annu. Rev. Mater. Res. 37, 659–679 (2007). (10.1146/annurev.matsci.37.052506.084226) / Annu. Rev. Mater. Res. by BW Wessels (2007)
  5. Dawber, M., Rabe, K. M. & Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005). (10.1103/RevModPhys.77.1083) / Rev. Mod. Phys. by M Dawber (2005)
  6. Martin, L. W. & Schlom, D. G. Advanced synthesis techniques and routes to new single-phase multiferroics. Curr. Opin. Solid State Mater. Sci. 16, 199–215 (2012). (10.1016/j.cossms.2012.03.001) / Curr. Opin. Solid State Mater. Sci. by LW Martin (2012)
  7. Nagarajan, V. et al. Thickness dependence of structural and electrical properties in epitaxial lead zirconate titanate films. J. Appl. Phys. 86, 595–602 (1999). (10.1063/1.370772) / J. Appl. Phys. by V Nagarajan (1999)
  8. Li, Y. L., Hu, S. Y., Liu, Z. K. & Chen, L. Q. Effect of electrical boundary conditions on ferroelectric domain structures in thin films. Appl. Phys. Lett. 81, 427–429 (2002). (10.1063/1.1492025) / Appl. Phys. Lett. by YL Li (2002)
  9. Pertsev, N. A., Arlt, G. & Zembilgotov, A. G. Domain-wall and intrinsic contributions to the dielectric response of epitaxial ferroelectric films. Microelectron. Eng. 29, 135–140 (1995). (10.1016/0167-9317(95)00131-X) / Microelectron. Eng. by NA Pertsev (1995)
  10. Xu, F. et al. Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films. J. Appl. Phys. 89, 1336–1348 (2001). (10.1063/1.1325005) / J. Appl. Phys. by F Xu (2001)
  11. Karthik, J., Damodaran, A. R. & Martin, L. W. Effect of 90° domain walls on the low-field permittivity of PbZr0.2Ti0.8O3 thin films. Phys. Rev. Lett. 108, 167601 (2012). (10.1103/PhysRevLett.108.167601) / Phys. Rev. Lett. by J Karthik (2012)
  12. Kim, D. J., Maria, J. P., Kingon, A. I. & Streiffer, S. K. Evaluation of intrinsic and extrinsic contributions to the piezoelectric properties of Pb(Zr1−xTix)O3 thin films as a function of composition. J. Appl. Phys. 93, 5568–5575 (2003). (10.1063/1.1566478) / J. Appl. Phys. by DJ Kim (2003)
  13. Bruchhaus, R., Pitzer, D., Schreiter, M. & Wersing, W. Optimized PZT thin films for pyroelectric IR detector arrays. J. Electroceram. 3, 151–162 (1999). (10.1023/A:1009995126986) / J. Electroceram. by R Bruchhaus (1999)
  14. Karthik, J. & Martin, L. W. Pyroelectric properties of polydomain epitaxial Pb(Zr1−xTix)O3 thin films. Phys. Rev. B 84, 024102 (2011). (10.1103/PhysRevB.84.024102) / Phys. Rev. B by J Karthik (2011)
  15. Pertsev, N. A., Kukhar, V. G., Kohlstedt, H. & Waser, R. Phase diagrams and physical properties of single-domain epitaxial Pb(Zr1−xTix)O3 thin films. Phys. Rev. B 67, 054107 (2003). (10.1103/PhysRevB.67.054107) / Phys. Rev. B by NA Pertsev (2003)
  16. Pertsev, N. A. & Zembilgotov, A. G. Domain populations in epitaxial ferroelectric thin films: Theoretical calculations and comparison with experiment. J. Appl. Phys. 80, 6401–6406 (1996). (10.1063/1.363659) / J. Appl. Phys. by NA Pertsev (1996)
  17. Saito, K., Kurosawa, T., Akai, T., Oikawa, T. & Funakubo, H. Structural characterization and 90 degrees domain contribution to ferroelectricity of epitaxial Pb(Zr0.35, Ti0.65)O3 thin films. J. Appl. Phys. 93, 545–550 (2003). (10.1063/1.1530727) / J. Appl. Phys. by K Saito (2003)
  18. Oikawa, T., Aratani, M., Funakubo, H., Saito, K. & Mizuhira, M. Composition and orientation dependence of electrical properties of epitaxial Pb(ZrxTi1−x)O3 thin films grown using metalorganic chemical vapor deposition. J. Appl. Phys. 95, 3111–3115 (2004). (10.1063/1.1645646) / J. Appl. Phys. by T Oikawa (2004)
  19. Xu, R., Karthik, J., Damodaran, A. R. & Martin, L. W. Stationary domain wall contribution to enhanced ferroelectric susceptibility. Nature Commun. 5, 3120 (2014). (10.1038/ncomms4120) / Nature Commun. by R Xu (2014)
  20. Bernal, A., Zhang, S. J. & Bassiri-Gharb, N. Effects of orientation and composition on the extrinsic contributions to the dielectric response of relaxor-ferroelectric single crystals. Appl. Phys. Lett. 95, 142911 (2009). (10.1063/1.3245316) / Appl. Phys. Lett. by A Bernal (2009)
  21. Wada, S., Yako, K., Kakemoto, H., Tsurumi, T. & Kiguchi, T. Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes. J. Appl. Phys. 98, 014109 (2005). (10.1063/1.1957130) / J. Appl. Phys. by S Wada (2005)
  22. Grigoriev, A. et al. Nanosecond domain wall dynamics in ferroelectric Pb(Zr, Ti)O3 thin films. Phys. Rev. Lett. 96, 187601 (2006). (10.1103/PhysRevLett.96.187601) / Phys. Rev. Lett. by A Grigoriev (2006)
  23. Jo, J. Y. et al. Nanosecond dynamics of ferroelectric/dielectric superlattices. Phys. Rev. Lett. 107, 055501 (2011). (10.1103/PhysRevLett.107.055501) / Phys. Rev. Lett. by JY Jo (2011)
  24. Zubko, P., Stucki, N., Lichtensteiger, C. & Triscone, J. M. X-ray diffraction studies of 180° ferroelectric domains in PbTiO3/SrTiO3 superlattices under an applied electric field. Phys. Rev. Lett. 104, 187601 (2010). (10.1103/PhysRevLett.104.187601) / Phys. Rev. Lett. by P Zubko (2010)
  25. Kalinin, S. V. et al. Defect-mediated polarization switching in ferroelectrics and related materials: From mesoscopic mechanisms to atomistic control. Adv. Mater. 22, 314–322 (2010). (10.1002/adma.200900813) / Adv. Mater. by SV Kalinin (2010)
  26. Gruverman, A. et al. Direct studies of domain switching dynamics in thin film ferroelectric capacitors. Appl. Phys. Lett. 87, 082902 (2005). (10.1063/1.2010605) / Appl. Phys. Lett. by A Gruverman (2005)
  27. Nelson, C. T. et al. Domain dynamics during ferroelectric switching. Science 334, 968–971 (2011). (10.1126/science.1206980) / Science by CT Nelson (2011)
  28. Winkler, C. R., Damodaran, A. R., Karthik, J., Martin, L. W. & Taheri, M. L. Direct observation of ferroelectric domain switching in varying electric field regimes using in situ TEM. Micron 43, 1121–1126 (2012). (10.1016/j.micron.2012.02.009) / Micron by CR Winkler (2012)
  29. Chang, H. J. et al. Watching domains grow: In-situ studies of polarization switching by combined scanning probe and scanning transmission electron microscopy. J. Appl. Phys. 110, 052014 (2011). (10.1063/1.3623779) / J. Appl. Phys. by HJ Chang (2011)
  30. Phillpot, S. R., Sinnott, S. B. & Asthagiri, A. Atomic-level simulation of ferroelectricity in oxides: Current status and opportunities. Annu. Rev. Mater. Res. 37, 239–270 (2007). (10.1146/annurev.matsci.37.052506.084206) / Annu. Rev. Mater. Res. by SR Phillpot (2007)
  31. Sepliarsky, M., Phillpot, S. R., Wolf, D., Stachiotti, M. G. & Migoni, R. L. Atomic-level simulation of ferroelectricity in perovskite solid solutions. Appl. Phys. Lett. 76, 3986–3988 (2000). (10.1063/1.126843) / Appl. Phys. Lett. by M Sepliarsky (2000)
  32. Liu, S., Grinberg, I., Takenaka, H. & Rappe, A. M. Reinterpretation of bond-valence model with bond-order formalism: An improved bond-valence-based interatomic potential for PbTiO3 . Phys. Rev. B 88, 104102 (2013). (10.1103/PhysRevB.88.104102) / Phys. Rev. B by S Liu (2013)
  33. Liu, S., Grinberg, I. & Rappe, A. M. Development of a bond-valence based interatomic potential for BiFeO3 for accurate molecular dynamics simulations. J. Phys. Condens. Matter. 25, 102202 (2013). (10.1088/0953-8984/25/10/102202) / J. Phys. Condens. Matter. by S Liu (2013)
  34. Sepliarsky, M., Stachiotti, M. G. & Migoni, R. L. Surface reconstruction and ferroelectricity in PbTiO3 thin films. Phys. Rev. B 72, 014110 (2005). (10.1103/PhysRevB.72.014110) / Phys. Rev. B by M Sepliarsky (2005)
  35. Takenaka, H., Grinberg, I. & Rappe, A. M. Anisotropic local correlations and dynamics in a relaxor ferroelectric. Phys. Rev. Lett. 110, 147602 (2013). (10.1103/PhysRevLett.110.147602) / Phys. Rev. Lett. by H Takenaka (2013)
  36. Shin, Y. H., Grinberg, I., Chen, I. W. & Rappe, A. M. Nucleation and growth mechanism of ferroelectric domain-wall motion. Nature 449, 881–887 (2007). (10.1038/nature06165) / Nature by YH Shin (2007)
  37. Roytburd, A. L. Equilibrium structure of epitaxial layers. Phys. Status Solidi A 37, 329–339 (1976). (10.1002/pssa.2210370141) / Phys. Status Solidi A by AL Roytburd (1976)
  38. Ouyang, J. et al. Engineering of self-assembled domain architectures with ultra-high piezoelectric response in epitaxial ferroelectric films. Adv. Funct. Mater. 17, 2094–2100 (2007). (10.1002/adfm.200600823) / Adv. Funct. Mater. by J Ouyang (2007)
  39. Romanov, A. E., Vojta, A., Pompe, W., Lefevre, M. J. & Speck, J. S. Domain patterns in (111) oriented tetragonal ferroelectric films. Phys. Status Solidi A 172, 225–253 (1999). (10.1002/(SICI)1521-396X(199903)172:1<225::AID-PSSA225>3.0.CO;2-2) / Phys. Status Solidi A by AE Romanov (1999)
  40. Karthik, J., Damodaran, A. R. & Martin, L. W. Epitaxial ferroelectric heterostructures fabricated by selective area epitaxy of SrRuO3 using an MgO mask. Adv. Mater. 24, 1610–1615 (2012). (10.1002/adma.201104697) / Adv. Mater. by J Karthik (2012)
  41. Bassiri-Gharb, N. et al. Domain wall contributions to the properties of piezoelectric thin films. J. Electroceram. 19, 47–65 (2007). (10.1007/s10832-007-9001-1) / J. Electroceram. by N Bassiri-Gharb (2007)
  42. Sluka, T., Tagantsev, A. K., Dmajanovic, D., Gureev, M. & Setter, N. Enhanced electromechanical response of ferroelectrics due to charged domain walls. Nature Commun. 3, 748 (2012). (10.1038/ncomms1751) / Nature Commun. by T Sluka (2012)
  43. Kamel, T. M. & de With, G. Double peak switching current in soft ferroelectric lead zirconate titanate. J. Appl. Phys. 102, 044118 (2007). (10.1063/1.2767188) / J. Appl. Phys. by TM Kamel (2007)
  44. Yin, J. & Cao, W. Polarization reversal study using ultrasound. Appl. Phys. Lett. 79, 4556–4558 (2001). (10.1063/1.1428629) / Appl. Phys. Lett. by J Yin (2001)
  45. Daniels, J. E. et al. Neutron diffraction study of the polarization reversal mechanism in [111]C-oriented Pb(Zn1/3Nb2/3)O3−xPbTiO3 . J. Appl. Phys. 101, 104108 (2007). (10.1063/1.2733636) / J. Appl. Phys. by JE Daniels (2007)
  46. Pramanick, A., Prewitt, A. D., Forrester, J. S. & Jones, J. L. Domains, domain walls and defects in perovskite ferroelectric oxides: A review of present understanding and recent contributions. Crit. Rev. Solid State Mater. Sci. 37, 243–275 (2012). (10.1080/10408436.2012.686891) / Crit. Rev. Solid State Mater. Sci. by A Pramanick (2012)
  47. Nagarajan, V. et al. Dynamics of ferroelastic domains in ferroelectric thin films. Nature Mater. 2, 43–47 (2003). (10.1038/nmat800) / Nature Mater. by V Nagarajan (2003)
  48. Anbusathaiah, V. et al. Labile ferroelastic nanodomains in bilayered ferroelectric thin films. Adv. Mater. 21, 3497–3502 (2009). (10.1002/adma.200803701) / Adv. Mater. by V Anbusathaiah (2009)
  49. Meyer, B. & Vanderbilt, D. Ab initio study of ferroelectric domain walls in PbTiO3 . Phys. Rev. B 65, 104111 (2002). (10.1103/PhysRevB.65.104111) / Phys. Rev. B by B Meyer (2002)
  50. Gao, P. et al. Atomic-scale mechanisms of ferroelastic domain-wall-mediated ferroelectric switching. Nature Commun. 4, 2791 (2013). (10.1038/ncomms3791) / Nature Commun. by P Gao (2013)
Dates
Type When
Created 10 years, 9 months ago (Oct. 26, 2014, 3:14 p.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 2:55 p.m.)
Indexed 1 day, 23 hours ago (Aug. 19, 2025, 7:06 a.m.)
Issued 10 years, 9 months ago (Oct. 26, 2014)
Published 10 years, 9 months ago (Oct. 26, 2014)
Published Online 10 years, 9 months ago (Oct. 26, 2014)
Published Print 10 years, 7 months ago (Jan. 1, 2015)
Funders 0

None

@article{Xu_2014, title={Ferroelectric polarization reversal via successive ferroelastic transitions}, volume={14}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat4119}, DOI={10.1038/nmat4119}, number={1}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Xu, Ruijuan and Liu, Shi and Grinberg, Ilya and Karthik, J. and Damodaran, Anoop R. and Rappe, Andrew M. and Martin, Lane W.}, year={2014}, month=oct, pages={79–86} }