Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Sun, J., He, L., Lo, Y.-C., Xu, T., Bi, H., Sun, L., Zhang, Z., Mao, S. X., & Li, J. (2014). Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nature Materials, 13(11), 1007–1012.

Authors 9
  1. Jun Sun (first)
  2. Longbing He (additional)
  3. Yu-Chieh Lo (additional)
  4. Tao Xu (additional)
  5. Hengchang Bi (additional)
  6. Litao Sun (additional)
  7. Ze Zhang (additional)
  8. Scott X. Mao (additional)
  9. Ju Li (additional)
References 38 Referenced 282
  1. Park, M. et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nature Nanotech. 7, 803–809 (2012). (10.1038/nnano.2012.206) / Nature Nanotech. by M Park (2012)
  2. Chen, J. Y., Lim, B., Lee, E. P. & Xia, Y. N. Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 4, 81–95 (2009). (10.1016/j.nantod.2008.09.002) / Nano Today by JY Chen (2009)
  3. Liu, N., Tang, M. L., Hentschel, M., Giessen, H. & Alivisatos, A. P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nature Mater. 10, 631–636 (2011). (10.1038/nmat3029) / Nature Mater. by N Liu (2011)
  4. Muhlschlegel, P., Eisler, H. J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005). (10.1126/science.1111886) / Science by P Muhlschlegel (2005)
  5. Rodrigues, V., Fuhrer, T. & Ugarte, D. Signature of atomic structure in the quantum conductance of gold nanowires. Phys. Rev. Lett. 85, 4124–4127 (2000). (10.1103/PhysRevLett.85.4124) / Phys. Rev. Lett. by V Rodrigues (2000)
  6. Rodrigues, V. & Ugarte, D. Real-time imaging of atomistic process in one-atom-thick metal junctions. Phys. Rev. B 63, 073405 (2001). (10.1103/PhysRevB.63.073405) / Phys. Rev. B by V Rodrigues (2001)
  7. Uchic, M. D., Dimiduk, D. M., Florando, J. N. & Nix, W. D. Sample dimensions influence strength and crystal plasticity. Science 305, 986–989 (2004). (10.1126/science.1098993) / Science by MD Uchic (2004)
  8. Yu, Q. et al. Strong crystal size effect on deformation twinning. Nature 463, 335–338 (2010). (10.1038/nature08692) / Nature by Q Yu (2010)
  9. Brinckmann, S., Kim, J. Y. & Greer, J. R. Fundamental differences in mechanical behavior between two types of crystals at the nanoscale. Phys. Rev. Lett. 100, 155502 (2008). (10.1103/PhysRevLett.100.155502) / Phys. Rev. Lett. by S Brinckmann (2008)
  10. Iijima, S. & Ichihashi, T. Structural instability of ultrafine particles of metals. Phys. Rev. Lett. 56, 616–619 (1986). (10.1103/PhysRevLett.56.616) / Phys. Rev. Lett. by S Iijima (1986)
  11. Wang, Z. W. & Palmer, R. E. Determination of the ground-state atomic structures of size-selected Au nanoclusters by electron-beam-induced transformation. Phys. Rev. Lett. 108, 245502 (2012). (10.1103/PhysRevLett.108.245502) / Phys. Rev. Lett. by ZW Wang (2012)
  12. Mordehai, D., Rabkin, E. & Srolovitz, D. J. Pseudoelastic deformation during nanoscale adhesive contact formation. Phys. Rev. Lett. 107, 096101 (2011). (10.1103/PhysRevLett.107.096101) / Phys. Rev. Lett. by D Mordehai (2011)
  13. Coble, R. L. A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 34, 1679–1682 (1963). (10.1063/1.1702656) / J. Appl. Phys. by RL Coble (1963)
  14. Zheng, H. et al. Discrete plasticity in sub-10-nm-sized gold crystals. Nature Commun. 1, 144 (2010). (10.1038/ncomms1149) / Nature Commun. by H Zheng (2010)
  15. Wang, Z. W. & Palmer, R. E. Mass spectrometry and dynamics of gold adatoms observed on the surface of size-selected Au nanoclusters. Nano Lett. 12, 91–95 (2012). (10.1021/nl2037112) / Nano Lett. by ZW Wang (2012)
  16. Gleiter, H. Nanocrystalline materials. Prog. Mater. Sci. 33, 223–315 (1989). (10.1016/0079-6425(89)90001-7) / Prog. Mater. Sci. by H Gleiter (1989)
  17. Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P. & Tour, J. M. Conductance of a molecular junction. Science 278, 252–254 (1997). (10.1126/science.278.5336.252) / Science by MA Reed (1997)
  18. Combe, N., Jensen, P. & Pimpinelli, A. Changing shapes in the nanoworld. Phys. Rev. Lett. 85, 110–113 (2000). (10.1103/PhysRevLett.85.110) / Phys. Rev. Lett. by N Combe (2000)
  19. Mullins, W. W. & Rohrer, G. S. Nucleation barrier for volume-conserving shape changes of faceted crystals. J. Am. Ceram. Soc. 83, 214–216 (2000). (10.1111/j.1151-2916.2000.tb01173.x) / J. Am. Ceram. Soc. by WW Mullins (2000)
  20. Egerton, R. F., Li, P. & Malac, M. Radiation damage in the TEM and SEM. Micron 35, 399–409 (2004). (10.1016/j.micron.2004.02.003) / Micron by RF Egerton (2004)
  21. Kim, S. Y., Lee, I. H. & Jun, S. Transition-pathway models of atomic diffusion on fcc metal surfaces. I. Flat surfaces. Phys. Rev. B 76, 245407 (2007). (10.1103/PhysRevB.76.245407) / Phys. Rev. B by SY Kim (2007)
  22. Kim, S. Y., Lee, I. H. & Jun, S. Transition-pathway models of atomic diffusion on fcc metal surfaces. II. Stepped surfaces. Phys. Rev. B 76, 245408 (2007). (10.1103/PhysRevB.76.245408) / Phys. Rev. B by SY Kim (2007)
  23. Aminpour, M., Trushin, O. & Rahman, T. S. Effect of misfit dislocation on surface diffusion. Phys. Rev. B 84, 035455 (2011). (10.1103/PhysRevB.84.035455) / Phys. Rev. B by M Aminpour (2011)
  24. Ala-Nissila, T., Ferrando, R. & Ying, S. C. Collective and single particle diffusion on surfaces. Adv. Phys. 51, 949–1078 (2002). (10.1080/00018730110107902) / Adv. Phys. by T Ala-Nissila (2002)
  25. Yildirim, H., Kara, A. & Rahman, T. S. Origin of quasi-constant pre-exponential factors for adatom diffusion on Cu and Ag surfaces. Phys. Rev. B 76, 165421 (2007). (10.1103/PhysRevB.76.165421) / Phys. Rev. B by H Yildirim (2007)
  26. Yildirim, H. & Rahman, T. S. Diffusion barriers for Ag and Cu adatoms on the terraces and step edges on Cu(100) and Ag(100): An ab initio study. Phys. Rev. B 80, 235413 (2009). (10.1103/PhysRevB.80.235413) / Phys. Rev. B by H Yildirim (2009)
  27. Wang, B. Y., Liu, M. X., Wang, Y. T. & Chen, X. S. Structures and energetics of silver and gold nanoparticles. J. Phys. Chem. C 115, 11374–11381 (2011). (10.1021/jp201023x) / J. Phys. Chem. C by BY Wang (2011)
  28. Marks, L. D. Experimental studies of small-particle structrures. Rep. Prog. Phys. 57, 603–649 (1994). (10.1088/0034-4885/57/6/002) / Rep. Prog. Phys. by LD Marks (1994)
  29. Hara, S. & Li, J. Adaptive strain-boost hyperdynamics simulations of stress-driven atomic processes. Phys. Rev. B 82, 184114 (2010). (10.1103/PhysRevB.82.184114) / Phys. Rev. B by S Hara (2010)
  30. Miron, R. A. & Fichthorn, K. A. Accelerated molecular dynamics with the bond-boost method. J. Chem. Phys. 119, 6210–6216 (2003). (10.1063/1.1603722) / J. Chem. Phys. by RA Miron (2003)
  31. Strachan, D. R. et al. Clean electromigrated nanogaps imaged by transmission electron microscopy. Nano Lett. 6, 441–444 (2006). (10.1021/nl052302a) / Nano Lett. by DR Strachan (2006)
  32. Couchman, P. R. & Jesser, W. A. Thermodynamic theory of size dependence of melting temperature in metals. Nature 269, 481–483 (1977). (10.1038/269481a0) / Nature by PR Couchman (1977)
  33. Lai, S. L., Carlsson, J. R. A. & Allen, L. H. Melting point depression of Al clusters generated during the early stages of film growth: Nanocalorimetry measurements. Appl. Phys. Lett. 72, 1098–1100 (1998). (10.1063/1.120946) / Appl. Phys. Lett. by SL Lai (1998)
  34. Bachels, T., Guntherodt, H. J. & Schafer, R. Melting of isolated tin nanoparticles. Phys. Rev. Lett. 85, 1250–1253 (2000). (10.1103/PhysRevLett.85.1250) / Phys. Rev. Lett. by T Bachels (2000)
  35. Asoro, M. A., Damiano, J. & Ferreira, P. J. Size effects on the melting temperature of silver nanoparticles: In-situ TEM observations. Microsc. Microanal. 15, 706–707 (2009). (10.1017/S1431927609097013) / Microsc. Microanal. by MA Asoro (2009)
  36. Lu, H. M., Li, P. Y., Cao, Z. H. & Meng, X. K. Size-, shape-, and dimensionality-dependent melting temperatures of nanocrystals. J. Phys. Chem. C 113, 7598–7602 (2009). (10.1021/jp900314q) / J. Phys. Chem. C by HM Lu (2009)
  37. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). (10.1006/jcph.1995.1039) / J. Comput. Phys. by S Plimpton (1995)
  38. Sheng, H. W., Kramer, M. J., Cadien, A., Fujita, T. & Chen, M. W. Highly optimized embedded-atom-method potentials for fourteen fcc metals. Phys. Rev. B 83, 134118 (2011). (10.1103/PhysRevB.83.134118) / Phys. Rev. B by HW Sheng (2011)
Dates
Type When
Created 10 years, 10 months ago (Oct. 10, 2014, 5:39 a.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 3:46 p.m.)
Indexed 2 weeks, 5 days ago (Aug. 2, 2025, 12:12 a.m.)
Issued 10 years, 10 months ago (Oct. 12, 2014)
Published 10 years, 10 months ago (Oct. 12, 2014)
Published Online 10 years, 10 months ago (Oct. 12, 2014)
Published Print 10 years, 9 months ago (Nov. 1, 2014)
Funders 0

None

@article{Sun_2014, title={Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles}, volume={13}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat4105}, DOI={10.1038/nmat4105}, number={11}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Sun, Jun and He, Longbing and Lo, Yu-Chieh and Xu, Tao and Bi, Hengchang and Sun, Litao and Zhang, Ze and Mao, Scott X. and Li, Ju}, year={2014}, month=oct, pages={1007–1012} }