Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Russo, J., Romano, F., & Tanaka, H. (2014). New metastable form of ice and its role in the homogeneous crystallization of water. Nature Materials, 13(7), 733–739.

Authors 3
  1. John Russo (first)
  2. Flavio Romano (additional)
  3. Hajime Tanaka (additional)
References 47 Referenced 186
  1. Eisenberg, D. & Kauzmann, W. The Structure and Properties of Water (Oxford Univ. Press, 1969). / The Structure and Properties of Water by D Eisenberg (1969)
  2. Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995). (10.1126/science.267.5206.1924) / Science by CA Angell (1995)
  3. Mishima, O. & Stanley, H. The relationship between liquid, supercooled and glassy water. Nature 396, 329–335 (1998). (10.1038/24540) / Nature by O Mishima (1998)
  4. Debenedetti, P. Supercooled and glassy water. J. Phys. Condens. Matter 15, R1669–R1726 (2003). (10.1088/0953-8984/15/45/R01) / J. Phys. Condens. Matter by P Debenedetti (2003)
  5. Pruppacher, H. R. A new look at homogeneous ice nucleation in supercooled water drops. J. Atmos. Sci. 52, 1924–1933 (1995). (10.1175/1520-0469(1995)052<1924:ANLAHI>2.0.CO;2) / J. Atmos. Sci. by HR Pruppacher (1995)
  6. Rosenfeld, D. & Woodley, W. L. Deep convective clouds with sustained supercooled liquid water down to −37.5 °C. Nature 405, 440–442 (2000). (10.1038/35013030) / Nature by D Rosenfeld (2000)
  7. Koop, T., Luo, B., Tsias, A. & Peter, T. Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature 406, 611–614 (2000). (10.1038/35020537) / Nature by T Koop (2000)
  8. Soper, A. K. Structural transformations in amorphous ice and supercooled water and their relevance to the phase diagram of water. Mol. Phys. 106, 2053–2076 (2008). (10.1080/00268970802116146) / Mol. Phys. by AK Soper (2008)
  9. Morishige, K. & Nobuoka, K. X-ray diffraction studies of freezing and melting of water confined in a mesoporous adsorbent (MCM-41). J. Chem. Phys. 107, 6965–6969 (1997). (10.1063/1.474936) / J. Chem. Phys. by K Morishige (1997)
  10. Jelassi, J. et al. Studies of water and ice in hydrophilic and hydrophobic mesoporous silicas: pore characterisation and phase transformations. Phys. Chem. Chem. Phys. 12, 2838–2849 (2010). (10.1039/b908400b) / Phys. Chem. Chem. Phys. by J Jelassi (2010)
  11. Hansen, T., Koza, M. & Kuhs, W. Formation and annealing of cubic ice: I. Modelling of stacking faults. J. Phys. Condens. Matter 20, 285104 (2008). (10.1088/0953-8984/20/28/285104) / J. Phys. Condens. Matter by T Hansen (2008)
  12. Shilling, J. et al. Measurements of the vapor pressure of cubic ice and their implications for atmospheric ice clouds. Geophys. Res. Lett. 33, L17801 (2006). (10.1029/2006GL026671) / Geophys. Res. Lett. by J Shilling (2006)
  13. Kobayashi, M. & Tanaka, H. Relationship between the phase diagram, the glass-forming ability, and the fragility of a water/salt mixture. J. Phys. Chem. B 115, 14077–14090 (2011). (10.1021/jp203855c) / J. Phys. Chem. B by M Kobayashi (2011)
  14. Mayer, E. & Hallbrucker, A. Cubic ice from liquid water. Nature 325, 601–602 (1987). (10.1038/325601a0) / Nature by E Mayer (1987)
  15. Kohl, I., Mayer, E. & Hallbrucker, A. The glassy water–cubic ice system: A comparative study by X-ray diffraction and differential scanning calorimetry. Phys. Chem. Chem. Phys. 2, 1579–1586 (2000). (10.1039/a908688i) / Phys. Chem. Chem. Phys. by I Kohl (2000)
  16. Murray, B. J. & Bertram, A. K. Formation and stability of cubic ice in water droplets. Phys. Chem. Chem. Phys. 8, 186–192 (2006). (10.1039/B513480C) / Phys. Chem. Chem. Phys. by BJ Murray (2006)
  17. Malkin, T. L., Murray, B. J., Brukhno, A. V., Anwar, J. & Salzmann, C. G. Structure of ice crystallized from supercooled water. Proc. Natl Acad. Sci. USA 109, 1041–1045 (2012). (10.1073/pnas.1113059109) / Proc. Natl Acad. Sci. USA by TL Malkin (2012)
  18. Svishchev, I. M. & Kusalik, P. G. Crystallization of liquid water in a molecular dynamics simulation. Phys. Rev. Lett. 73, 975–978 (1994). (10.1103/PhysRevLett.73.975) / Phys. Rev. Lett. by IM Svishchev (1994)
  19. Matsumoto, M., Saito, S. & Ohmine, I. Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. Nature 416, 409–413 (2002). (10.1038/416409a) / Nature by M Matsumoto (2002)
  20. Moore, E. B. & Molinero, V. Is it cubic? Ice crystallization from deeply supercooled water. Phys. Chem. Chem. Phys. 13, 20008–20016 (2011). (10.1039/c1cp22022e) / Phys. Chem. Chem. Phys. by EB Moore (2011)
  21. Li, T., Donadio, D., Russo, G. & Galli, G. Homogeneous ice nucleation from supercooled water. Phys. Chem. Chem. Phys. 13, 19807–19813 (2011). (10.1039/c1cp22167a) / Phys. Chem. Chem. Phys. by T Li (2011)
  22. Reinhardt, A., Doye, J. P., Noya, E. G. & Vega, C. Local order parameters for use in driving homogeneous ice nucleation with all-atom models of water. J. Chem. Phys. 137, 194504–194504 (2012). (10.1063/1.4766362) / J. Chem. Phys. by A Reinhardt (2012)
  23. Moore, E. & Molinero, V. Structural transformation in supercooled water controls the crystallization rate of ice. Nature 479, 506–508 (2011). (10.1038/nature10586) / Nature by E Moore (2011)
  24. Zhao, Z. et al. Tetragonal allotrope of group 14 elements. J. Am. Chem. Soc. 134, 12362–12365 (2012). (10.1021/ja304380p) / J. Am. Chem. Soc. by Z Zhao (2012)
  25. Abascal, J. & Vega, C. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123, 234505 (2005). (10.1063/1.2121687) / J. Chem. Phys. by J Abascal (2005)
  26. Sanz, E., Vega, C., Abascal, J. & MacDowell, L. Phase diagram of water from computer simulation. Phys. Rev. Lett. 92, 255701 (2004). (10.1103/PhysRevLett.92.255701) / Phys. Rev. Lett. by E Sanz (2004)
  27. Jacobson, L. C., Hujo, W. & Molinero, V. Thermodynamic stability and growth of guest-free clathrate hydrates: a low-density crystal phase of water. J. Phys. Chem. B 113, 10298–10307 (2009). (10.1021/jp903439a) / J. Phys. Chem. B by LC Jacobson (2009)
  28. Romano, F., Sanz, E. & Sciortino, F. Crystallization of tetrahedral patchy particles in silico. J. Chem. Phys. 134, 174502 (2011). (10.1063/1.3578182) / J. Chem. Phys. by F Romano (2011)
  29. Ghiringhelli, L. M. et al. State-of-the-art models for the phase diagram of carbon and diamond nucleation. Mol. Phys. 106, 2011–2038 (2008). (10.1080/00268970802077884) / Mol. Phys. by LM Ghiringhelli (2008)
  30. Ten Wolde, P. R., Ruiz-Montero, M. J. & Frenkel, D. Numerical evidence for bcc ordering at the surface of a critical fcc nucleus. Phys. Rev. Lett. 75, 2714–2717 (1995). (10.1103/PhysRevLett.75.2714) / Phys. Rev. Lett. by PR Ten Wolde (1995)
  31. Santra, M., Singh, R. S. & Bagchi, B. Nucleation of a stable solid from melt in the presence of multiple metastable intermediate phases: Wetting, Ostwald step rule and vanishing polymorphs. J. Phys. Chem. B 117, 13154–13163 (2013). (10.1021/jp4031199) / J. Phys. Chem. B by M Santra (2013)
  32. Lundrigan, S. E. & Saika-Voivod, I. Test of classical nucleation theory and mean first-passage time formalism on crystallization in the Lennard-Jones liquid. J. Chem. Phys. 131, 104503 (2009). (10.1063/1.3216867) / J. Chem. Phys. by SE Lundrigan (2009)
  33. Sanz, E. et al. Homogeneous ice nucleation at moderate supercooling from molecular simulation. J. Am. Chem. Soc. 135, 15008–15017 (2013). (10.1021/ja4028814) / J. Am. Chem. Soc. by E Sanz (2013)
  34. Stillinger, F. H. Water revisited. Science 209, 451–457 (1980). (10.1126/science.209.4455.451) / Science by FH Stillinger (1980)
  35. Russo, J. & Tanaka, H. Understanding water’s anomalies with locally favored structures. Nature Commun. 5, 3556 (2014). (10.1038/ncomms4556) / Nature Commun. by J Russo (2014)
  36. Ghiringhelli, L. M., Valeriani, C., Meijer, E. & Frenkel, D. Local structure of liquid carbon controls diamond nucleation. Phys. Rev. Lett. 99, 055702 (2007). (10.1103/PhysRevLett.99.055702) / Phys. Rev. Lett. by LM Ghiringhelli (2007)
  37. Kawasaki, T. & Tanaka, H. Formation of crystal nucleus from liquid. Proc. Natl Acad. Sci. USA 107, 14036–14041 (2010). (10.1073/pnas.1001040107) / Proc. Natl Acad. Sci. USA by T Kawasaki (2010)
  38. Russo, J. & Tanaka, H. The microscopic pathway to crystallization in supercooled liquids. Sci. Rep. 2, 505 (2012). (10.1038/srep00505) / Sci. Rep. by J Russo (2012)
  39. Russo, J. & Tanaka, H. Selection mechanism of polymorphs in the crystal nucleation of the Gaussian core model. Soft Matter 8, 4206–4215 (2012). (10.1039/C2SM07007C) / Soft Matter by J Russo (2012)
  40. Tanaka, H. Bond orientational order in liquids: Towards a unified description of water-like anomalies, liquid–liquid transition, glass transition, and crystallization. Eur. Phys. J. E 35, 1–84 (2012). (10.1140/epje/i2012-12001-6) / Eur. Phys. J. E by H Tanaka (2012)
  41. Seidl, M., Amann-Winkel, K., Handle, P. H., Zifferer, G. & Loerting, T. From parallel to single crystallization kinetics in high-density amorphous ice. Phys. Rev. B 88, 174105 (2013). (10.1103/PhysRevB.88.174105) / Phys. Rev. B by M Seidl (2013)
  42. Marchand, D. J., Hsiao, E. & Kim, S. H. Non-contact AFM imaging in water using electrically-driven cantilever vibration. Langmuir 29, 6762–6769 (2013). (10.1021/la4002797) / Langmuir by DJ Marchand (2013)
  43. Lied, A., Dosch, H. & Bilgram, J. H. Surface melting of ice Ih single crystals revealed by glancing angle X-ray scattering. Phys. Rev. Lett. 72, 3554–3557 (1994). (10.1103/PhysRevLett.72.3554) / Phys. Rev. Lett. by A Lied (1994)
  44. Vega, C., Sanz, E., Abascal, J. & Noya, E. Determination of phase diagrams via computer simulation: Methodology and applications to water, electrolytes and proteins. J. Phys. Condens. Matter 20, 153101 (2008). (10.1088/0953-8984/20/15/153101) / J. Phys. Condens. Matter by C Vega (2008)
  45. Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805 (1983). (10.1103/PhysRevB.28.784) / Phys. Rev. B by PJ Steinhardt (1983)
  46. Lechner, W. & Dellago, C. Accurate determination of crystal structures based on averaged local bond order parameters. J. Chem. Phys. 129, 114707 (2008). (10.1063/1.2977970) / J. Chem. Phys. by W Lechner (2008)
  47. Auer, S. & Frenkel, D. Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature 409, 1020–1023 (2001). (10.1038/35059035) / Nature by S Auer (2001)
Dates
Type When
Created 11 years, 3 months ago (May 16, 2014, 5:52 a.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 3:57 p.m.)
Indexed 2 weeks, 3 days ago (Aug. 6, 2025, 8:51 a.m.)
Issued 11 years, 3 months ago (May 18, 2014)
Published 11 years, 3 months ago (May 18, 2014)
Published Online 11 years, 3 months ago (May 18, 2014)
Published Print 11 years, 1 month ago (July 1, 2014)
Funders 0

None

@article{Russo_2014, title={New metastable form of ice and its role in the homogeneous crystallization of water}, volume={13}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat3977}, DOI={10.1038/nmat3977}, number={7}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Russo, John and Romano, Flavio and Tanaka, Hajime}, year={2014}, month=may, pages={733–739} }