Crossref
journal-article
Springer Science and Business Media LLC
Nature Materials (297)
References
150
Referenced
1,274
- Gough, J. A description of a property of caoutchouc or Indian rubber; with some reflections on the cause of the elasticity of this substance. Mem. Lit. Phil. Soc. Manchester 1 (2nd Series), 288–295 (1805). / Mem. Lit. Phil. Soc. Manchester by J Gough (1805)
-
Joule, J. P. On some thermo-dynamic properties of solids. Phil. Trans. 149, 91–131 (1859).
(
10.1098/rstl.1859.0005
) / Phil. Trans. by JP Joule (1859) - Thomson, W. On the thermoelastic and thermomagnetic properties of matter, Part I. Quart. J. Math. (April 1855).
-
Thomson, W. On the thermoelastic, thermomagnetic, and pyroelectric properties of matter. Lond. Edinb. Dublin Phil. Mag. J. Sci. 5, 4–27 (1878).
(
10.1080/14786447808639378
) / Lond. Edinb. Dublin Phil. Mag. J. Sci. by W Thomson (1878) -
Smith, A. Who discovered the magnetocaloric effect? Eur. Phys. J. H 38, 507–517 (2013).
(
10.1140/epjh/e2013-40001-9
) / Eur. Phys. J. H by A Smith (2013) -
Warburg, E. Magnetische Untersuchungen. Ann. Phys. 249, 141–164 (1881).
(
10.1002/andp.18812490510
) / Ann. Phys. by E Warburg (1881) -
Weiss, P. & Piccard, A. Le phénomène magnétocalorique. J. Phys. Theor. Appl. 7, 103–109 (1917).
(
10.1051/jphystap:019170070010300
) / J. Phys. Theor. Appl. by P Weiss (1917) -
Kobeko, P. & Kurtschatov, J. Dielektrische Eigenschaften der Seignettesalzkristalle. Z. Phys. 66, 192–205 (1930).
(
10.1007/BF01392900
) / Z. Phys. by P Kobeko (1930) -
Giauque, W. F. & MacDougall, D. P. Attainment of temperatures below 1° absolute by demagnetization of Gd2(SO4)3·8H2O. Phys. Rev. 43, 768 (1933).
(
10.1103/PhysRev.43.768
) / Phys. Rev. by WF Giauque (1933) -
Collins, S. C. & Zimmerman, F. J. Cyclic adiabatic demagnetization. Phys. Rev. 90, 991–992 (1953).
(
10.1103/PhysRev.90.991.2
) / Phys. Rev. by SC Collins (1953) -
Heer, C. V., Barnes, C. B. & Daunt, J. G. The design and operation of a magnetic refrigerator for maintaining temperatures below l °K. Rev. Sci. Instrum. 25, 1088–1098 (1954).
(
10.1063/1.1770944
) / Rev. Sci. Instrum. by CV Heer (1954) -
Brown, G. V. Magnetic heat pumping near room temperature. J. Appl. Phys. 47, 3673–3680 (1976).
(
10.1063/1.323176
) / J. Appl. Phys. by GV Brown (1976) -
Rodríguez, C. & Brown, L. C. The thermal effect due to stress-induced martensite formation in β-CuAlNi single crystals. Metall. Trans. A 11, 147–150 (1980).
(
10.1007/BF02700450
) / Metall. Trans. A by C Rodríguez (1980) -
Nikitin, S. A. et al. The magnetocaloric effect in Fe49Rh51 compound. Phys. Lett. A. 148, 363–366 (1990).
(
10.1016/0375-9601(90)90819-A
) / Phys. Lett. A. by SA Nikitin (1990) -
Mischenko, A. S., Zhang, Q., Scott, J. F., Whatmore, R. W. & Mathur, N. D. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3 . Science 311, 1270–1271 (2006).
(
10.1126/science.1123811
) / Science by AS Mischenko (2006) -
Neese, B. et al. Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321, 821–823 (2008).
(
10.1126/science.1159655
) / Science by B Neese (2008) -
Pecharsky, V. K. & Gschneidner, K. A. Jr Giant magnetocaloric effect in Gd5(Si2Ge2). Phys. Rev. Lett. 78, 4494–4497 (1997).
(
10.1103/PhysRevLett.78.4494
) / Phys. Rev. Lett. by VK Pecharsky (1997) -
de Oliveira, N. A. Entropy change upon magnetic field and pressure variations. Appl. Phys. Lett. 90, 052501 (2007).
(
10.1063/1.2434154
) / Appl. Phys. Lett. by NA de Oliveira (2007) -
Bonnot, E., Romero, R., Mañosa, Ll., Vives, E. & Planes, A. Elastocaloric effect associated with the martensitic transition in shape-memory alloys. Phys. Rev. Lett. 100, 125901 (2008).
(
10.1103/PhysRevLett.100.125901
) / Phys. Rev. Lett. by E Bonnot (2008) -
Mañosa, Ll. et al. Giant solid-state barocaloric effect in the Ni–Mn–In magnetic shape-memory alloy. Nature Mater. 9, 478–481 (2010).
(
10.1038/nmat2731
) / Nature Mater. by Ll Mañosa (2010) -
Fähler, S. et al. Caloric effects in ferroic materials: new concepts for cooling. Adv. Eng. Mater. 14, 10–19 (2012).
(
10.1002/adem.201100178
) / Adv. Eng. Mater. by S Fähler (2012) -
Pecharsky, V. K. & Gschneidner, K. A. Jr Magnetocaloric effect and magnetic refrigeration. J. Magn. Magn. Mater. 200, 44–56 (1999).
(
10.1016/S0304-8853(99)00397-2
) / J. Magn. Magn. Mater. by VK Pecharsky (1999) -
Gschneidner, K. A., Pecharsky, V. K. & Tsokol, A. O. Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479–1539 (2005).
(
10.1088/0034-4885/68/6/R04
) / Rep. Prog. Phys. by KA Gschneidner (2005) -
Brück, E. Developments in magnetocaloric refrigeration. J. Phys. D 38, R381–R391 (2005).
(
10.1088/0022-3727/38/23/R01
) / J. Phys. D by E Brück (2005) -
Franco, V., Blázquez, J. S., Ingale, B. & Conde, A. The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models. Annu. Rev. Mater. Res. 42, 305–342 (2012).
(
10.1146/annurev-matsci-062910-100356
) / Annu. Rev. Mater. Res. by V Franco (2012) -
Smith, A. et al. Materials challenges for high performance magnetocaloric refrigeration devices. Adv. Energy Mater. 2, 1288–1318 (2012).
(
10.1002/aenm.201200167
) / Adv. Energy Mater. by A Smith (2012) -
Correia, T. & Zhang, Q. (eds) Electrocaloric Materials (Springer, 2014).
(
10.1007/978-3-642-40264-7
) / Electrocaloric Materials by T Correia (2014) -
Lu, S. G. & Zhang, Q. Electrocaloric materials for solid-state refrigeration. Adv. Mater. 21, 1983–1987 (2009).
(
10.1002/adma.200802902
) / Adv. Mater. by SG Lu (2009) -
Scott, J. F. Electrocaloric materials. Annu. Rev. Mater. Res. 41, 229–240 (2011).
(
10.1146/annurev-matsci-062910-100341
) / Annu. Rev. Mater. Res. by JF Scott (2011) -
Valant, M. Electrocaloric materials for future solid-state refrigeration technologies. Prog. Mater. Sci. 57, 980–1009 (2012).
(
10.1016/j.pmatsci.2012.02.001
) / Prog. Mater. Sci. by M Valant (2012) -
Yuce, S. et al. Barocaloric effect in the magnetocaloric prototype Gd5Si2Ge2 . Appl. Phys. Lett. 101, 071906 (2012).
(
10.1063/1.4745920
) / Appl. Phys. Lett. by S Yuce (2012) -
Mañosa, Ll. et al. Inverse barocaloric effect in the giant magnetocaloric La-Fe-Si-Co compound. Nature Commun. 2, 595 (2011).
(
10.1038/ncomms1606
) / Nature Commun. by Ll Mañosa (2011) -
Müller, K. A. et al. Cooling by adiabatic pressure application in Pr1− xLaxNiO3 . Appl. Phys. Lett. 73, 1056–1058 (1998).
(
10.1063/1.122083
) / Appl. Phys. Lett. by KA Müller (1998) -
Strässle, Th., Furrer, A., Hossain, Z. & Geibel, Ch. Magnetic cooling by the application of external pressure in rare-earth compounds. Phys. Rev. B 67, 054407 (2003).
(
10.1103/PhysRevB.67.054407
) / Phys. Rev. B by Th Strässle (2003) -
Brown, L. C. The thermal effect in pseudoelastic single crystals of β-CuZnSn. Metall. Trans. A 12, 1491–1494 (1981).
(
10.1007/BF02643695
) / Metall. Trans. A by LC Brown (1981) -
Cui, J. et al. Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires. Appl. Phys. Lett. 101, 073904 (2012).
(
10.1063/1.4746257
) / Appl. Phys. Lett. by J Cui (2012) -
Shaw, J. A. & Kyriakides, S. Thermomechanical aspects of NiTi. J. Mech. Phys. Solids 43, 1243–1281 (1995).
(
10.1016/0022-5096(95)00024-D
) / J. Mech. Phys. Solids by JA Shaw (1995) -
Pieczyska, E. A., Gadaj, S. P., Nowacki, W. K. & Tobushi, H. Phase-transformation fronts evolution for stress- and strain-controlled tension tests in TiNi shape memory alloy. Exp. Mech. 46, 531–542 (2006).
(
10.1007/s11340-006-8351-y
) / Exp. Mech. by EA Pieczyska (2006) -
Bechtold, C., Chluba, C., Lima de Miranda, R. & Quandt, E. High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films. Appl. Phys. Lett. 101, 091903 (2012).
(
10.1063/1.4748307
) / Appl. Phys. Lett. by C Bechtold (2012) -
Soto-Parra, D. E. et al. Stress- and magnetic field-induced entropy changes in Fe-doped Ni–Mn–Ga shape-memory alloys. Appl. Phys. Lett. 96, 071912 (2010).
(
10.1063/1.3309755
) / Appl. Phys. Lett. by DE Soto-Parra (2010) -
Levitin, R. Z., Snegirev, V. V., Kopylov, A. V., Lagutin, A. S. & Gerber, A. Magnetic method of magnetocaloric effect determination in high pulsed magnetic fields. J. Magn. Magn. Mater. 170, 223–227 (1997).
(
10.1016/S0304-8853(96)00688-9
) / J. Magn. Magn. Mater. by RZ Levitin (1997) -
Dan'kov, S. Yu., Tishin, A. M., Pecharsky, V. K. & Gschneidner, K. A. Jr Magnetic phase transitions and the magnetothermal properties of gadolinium. Phys. Rev. B 57, 3478–3490 (1998).
(
10.1103/PhysRevB.57.3478
) / Phys. Rev. B by SYu Dan'kov (1998) -
Casanova, F. et al. Direct observation of the magnetic-field-induced entropy change in Gd5(SixGe1− x)4 giant magnetocaloric alloys. Appl. Phys. Lett. 86, 262504 (2005).
(
10.1063/1.1968431
) / Appl. Phys. Lett. by F Casanova (2005) -
Moya, X. et al. Calorimetric study of the inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn. J. Magn. Magn. Mater. 316, e572–e574 (2007).
(
10.1016/j.jmmm.2007.03.024
) / J. Magn. Magn. Mater. by X Moya (2007) -
Christensen, D. V. et al. Spatially resolved measurements of the magnetocaloric effect and the local magnetic field using thermography. J. Appl. Phys. 108, 063913 (2010).
(
10.1063/1.3487943
) / J. Appl. Phys. by DV Christensen (2010) -
Thacher, P. D. Electrocaloric effects in some ferroelectric and antiferroelectric Pb(Zr, Ti)O3 compounds. J. Appl. Phys. 39, 1996–2002 (1968).
(
10.1063/1.1656478
) / J. Appl. Phys. by PD Thacher (1968) -
Tuttle, B. A. & Payne, D. A. The effects of microstructure on the electrocaloric properties of Pb(Zr, Sn, Ti)O3 ceramics. Ferroelectrics 37, 603–606 (1981).
(
10.1080/00150198108223496
) / Ferroelectrics by BA Tuttle (1981) -
Wiseman, G. G. & Kuebler, J. K. Electrocaloric effect in ferroelectric Rochelle salt. Phys. Rev. 131, 2023–2027 (1963).
(
10.1103/PhysRev.131.2023
) / Phys. Rev. by GG Wiseman (1963) -
Moya, X. et al. Giant electrocaloric strength in single-crystal BaTiO3 . Adv. Mater. 25, 1360–1365 (2013).
(
10.1002/adma.201203823
) / Adv. Mater. by X Moya (2013) -
Lu, S. G., Rožič, B., Zhang, Q. M., Kutnjak, Z. & Neese, B. Enhanced electrocaloric effect in ferroelectric poly(vinylidene-fluoride/trifluoroethylene) 55/45 mol% copolymer at ferroelectric–paraelectric transition. Appl. Phys. Lett. 98, 122906 (2011).
(
10.1063/1.3569953
) / Appl. Phys. Lett. by SG Lu (2011) -
Lu, S. G. et al. Comparison of directly and indirectly measured electrocaloric effect in relaxor ferroelectric polymers. Appl. Phys. Lett. 97, 202901 (2010).
(
10.1063/1.3514255
) / Appl. Phys. Lett. by SG Lu (2010) -
Kar-Narayan, S. & Mathur, N. D. Direct and indirect electrocaloric measurements using multilayer capacitors. J. Phys. D 43, 032002 (2010).
(
10.1088/0022-3727/43/3/032002
) / J. Phys. D by S Kar-Narayan (2010) -
Kar-Narayan, S. et al. Direct electrocaloric measurements of a multilayer capacitor using scanning thermal microscopy and infra-red imaging. Appl. Phys. Lett. 102, 032903 (2013).
(
10.1063/1.4788924
) / Appl. Phys. Lett. by S Kar-Narayan (2013) -
Tishin, A. M. & Spichkin, Y. I. The Magnetocaloric Effect and its Applications (Institute of Physics, 2003).
(
10.1887/0750309229
) / The Magnetocaloric Effect and its Applications by AM Tishin (2003) -
Yu, B., Liu, M., Egolf, P. W. & Kitanovski, A. A review of magnetic refrigerator and heat pump prototypes built before the year 2010. Int. J. Refrig. 33, 1029–1060 (2010).
(
10.1016/j.ijrefrig.2010.04.002
) / Int. J. Refrig. by B Yu (2010) -
Annaorazov, M. P., Nikitin, S. A., Tyurin, A. L., Asatryan, K. A. & Dovletov, A. Kh. Anomalously high entropy change in FeRh alloy. J. Appl. Phys. 79, 1689–1695 (1996).
(
10.1063/1.360955
) / J. Appl. Phys. by MP Annaorazov (1996) -
Nikitin, S. A. et al. Giant elastocaloric effect in FeRh alloy. Phys. Lett. A 171, 234–236 (1992).
(
10.1016/0375-9601(92)90432-L
) / Phys. Lett. A by SA Nikitin (1992) -
Dung, N. H. et al. Mixed magnetism for refrigeration and energy conversion. Adv. Energy Mater. 1, 1215–1219 (2011).
(
10.1002/aenm.201100252
) / Adv. Energy Mater. by NH Dung (2011) -
Zhang, Q. et al. Magnetocaloric effect and improved relative cooling power in (La0.7Sr0.3MnO3/SrRuO3) superlattices. J. Phys. Condens. Matter 23, 052201 (2011).
(
10.1088/0953-8984/23/5/052201
) / J. Phys. Condens. Matter by Q Zhang (2011) -
Balli, M., Fruchart, D. & Gignoux, D. Optimization of La(Fe, Co)13− xSix based compounds for magnetic refrigeration. J. Phys. Condens. Matter 19, 236230 (2007).
(
10.1088/0953-8984/19/23/236230
) / J. Phys. Condens. Matter by M Balli (2007) -
Morrison, K. et al. The magnetocaloric performance in pure and mixed magnetic phase CoMnSi. J. Phys. D 43, 195001 (2010).
(
10.1088/0022-3727/43/19/195001
) / J. Phys. D by K Morrison (2010) -
Lyubina, J., Hannemann, U., Cohen, L. F. & Ryan, M. P. Novel La(Fe, Si)13/Cu composites for magnetic cooling. Adv. Energy Mater. 2, 1323–1327 (2012).
(
10.1002/aenm.201200297
) / Adv. Energy Mater. by J Lyubina (2012) -
Kar-Narayan, S. & Mathur, N. D. Predicted cooling powers for multilayer capacitors based on various electrocaloric and electrode materials. Appl. Phys. Lett. 95, 242903 (2009).
(
10.1063/1.3275013
) / Appl. Phys. Lett. by S Kar-Narayan (2009) -
Lyubina, J., Schäfer, R., Martin, N., Schultz, L. & Gutfleisch, O. Novel design of La(Fe, Si)13 alloys towards high magnetic refrigeration performance. Adv. Mater. 22, 3735–3739 (2010).
(
10.1002/adma.201000177
) / Adv. Mater. by J Lyubina (2010) -
Moore, J. D., Morrison, K., Sandeman, K. G., Katter, M. & Cohen, L. F. Reducing extrinsic hysteresis in first-order La(Fe, Co, Si)13 magnetocaloric systems. Appl. Phys. Lett. 95, 252504 (2009).
(
10.1063/1.3276565
) / Appl. Phys. Lett. by JD Moore (2009) -
Provenzano, V., Shapiro, A. J. & Shull, R. D. Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron. Nature 429, 853–857 (2004).
(
10.1038/nature02657
) / Nature by V Provenzano (2004) -
Fujita, A., Fujieda, S., Hasegawa, Y. & Fukamichi, K. Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1− x)13 compounds and their hydrides. Phys. Rev. B 67, 104416 (2003).
(
10.1103/PhysRevB.67.104416
) / Phys. Rev. B by A Fujita (2003) -
Pareti, L., Solzi, M., Albertini, F. & Paoluzi, A. Giant entropy change at the co-occurrence of structural and magnetic transitions in the Ni2.19Mn0.81Ga Heusler alloy. Eur. Phys. J. B 32, 303–307 (2003).
(
10.1140/epjb/e2003-00102-y
) / Eur. Phys. J. B by L Pareti (2003) -
Dalal, N., Klymachyov, A. & Bussmann-Holder, A. Coexistence of order–disorder and displacive features at the phase transitions in hydrogen-bonded solids: squaric acid and its analogs. Phys. Rev. Lett. 81, 5924–5927 (1998).
(
10.1103/PhysRevLett.81.5924
) / Phys. Rev. Lett. by N Dalal (1998) -
Zalar, B., Laguta, V. V. & Blinc, R. NMR evidence for the coexistence of order–disorder and displacive components in barium titanate. Phys. Rev. Lett. 90, 037601 (2003).
(
10.1103/PhysRevLett.90.037601
) / Phys. Rev. Lett. by B Zalar (2003) - Baumgartner, H. Elektrische Sättigungserscheinungen und elektrokalorischer Effekt von Kaliumphosphat KH2PO4 . Helv. Phys. Acta 23, 651–696 (1950). / Helv. Phys. Acta by H Baumgartner (1950)
- Strukov, B. A. Electrocaloric effect in single-crystal triglycine sulfate. Sov. Phys. Crystallogr. 11, 757–759 (1967). / Sov. Phys. Crystallogr. by BA Strukov (1967)
-
Kikuchi, A. & Sawaguchi, E. Electrocaloric effect in SrTiO3 . J. Phys. Soc. Jpn 19, 1497–1498 (1964).
(
10.1143/JPSJ.19.1497
) / J. Phys. Soc. Jpn by A Kikuchi (1964) -
Lombardo, G. & Pohl, R. O. Electrocaloric effect and a new type of impurity mode. Phys. Rev. Lett. 15, 291–293 (1965).
(
10.1103/PhysRevLett.15.291
) / Phys. Rev. Lett. by G Lombardo (1965) -
Shepherd, I. & Feher, G. Cooling by adiabatic depolarization of OH- molecules in KCl. Phys. Rev. Lett. 15, 194–198 (1965).
(
10.1103/PhysRevLett.15.194
) / Phys. Rev. Lett. by I Shepherd (1965) - Karchevskii, A. I. Electrocaloric effect in polycrystalline barium titanate. Phys. Solid State 3, 2249–2254 (1962). / Phys. Solid State by AI Karchevskii (1962)
-
Sinyavsky, Y. V., Pashkov, N. D., Gorovoy, Y. M., Lugansky, G. E. & Shebanov, L. The optical ferroelectric ceramic as working body for electrocaloric refrigeration. Ferroelectrics 90, 213–217 (1989).
(
10.1080/00150198908211296
) / Ferroelectrics by YV Sinyavsky (1989) -
Shebanov, L. & Borman, K. On lead-scandium tantalate solid solutions with high electrocaloric effect. Ferroelectrics 127, 143–148 (1992).
(
10.1080/00150199208223361
) / Ferroelectrics by L Shebanov (1992) -
Liu, X. Q., Chen, T. T., Wu, Y. J. & Chen, X. M. Enhanced electrocaloric effects in spark plasma-sintered Ba0.65Sr0.35TiO3-based ceramics at room temperature. J. Am. Ceram. Soc. 96, 1021–1023 (2013).
(
10.1111/jace.12219
) / J. Am. Ceram. Soc. by XQ Liu (2013) -
Defay, E., Crossley, S., Kar-Narayan, S., Moya, X. & Mathur, N. D. The electrocaloric efficiency of ceramic and polymer films. Adv. Mater. 25, 3337–3342 (2013).
(
10.1002/adma.201300606
) / Adv. Mater. by E Defay (2013) -
Rožič, B., Uršič, H., Holc, J., Kosec, M. & Kutnjak, Z. Direct measurements of the electrocaloric effect in substrate-free PMN-0.35PT thick films on a platinum layer. Integr. Ferroelectr. 140, 161–165 (2012).
(
10.1080/10584587.2012.741903
) / Integr. Ferroelectr. by B Rožič (2012) -
Rožič, B. et al. Influence of the critical point on the electrocaloric response of relaxor ferroelectrics. J. Appl. Phys. 110, 064118 (2011).
(
10.1063/1.3641975
) / J. Appl. Phys. by B Rožič (2011) -
Pirc, R., Kutnjak, Z., Blinc, R. & Zhang, Q. M. Upper bounds on the electrocaloric effect in polar solids. Appl. Phys. Lett. 98, 021909 (2011).
(
10.1063/1.3543628
) / Appl. Phys. Lett. by R Pirc (2011) -
Peräntie, J., Hagberg, J., Uusimäki, A. & Jantunen, H. Electric-field-induced dielectric and temperature changes in a <011>-oriented Pb(Mg1/3Nb2/3)O3 -PbTiO3 single crystal. Phys. Rev. B 82, 134119 (2010).
(
10.1103/PhysRevB.82.134119
) / Phys. Rev. B by J Peräntie (2010) -
Strässle, Th., Furrer, A. & Müller, K. A. Cooling by adiabatic application of pressure: the barocaloric effect. Physica B 276–278, 944–945 (2000).
(
10.1016/S0921-4526(99)01288-0
) / Physica B by Th Strässle (2000) -
Xiao, F., Fukuda, T. & Kakeshita, T. Significant elastocaloric effect in a Fe–31.2Pd (at. %) single crystal. Appl. Phys. Lett. 102, 161914 (2013).
(
10.1063/1.4803168
) / Appl. Phys. Lett. by F Xiao (2013) -
Gorev, M. V., Bogdanov, E. V., Flerov, I. N., Kocharova, A. G. & Laptash, N. M. Investigation of thermal expansion, phase diagrams, and barocaloric effect in the (NH4)2WO2F4 and (NH4)2MoO2F4 oxyfluorides. Phys. Solid State 52, 167–175 (2010).
(
10.1134/S1063783410010294
) / Phys. Solid State by MV Gorev (2010) -
Zarnetta, R. et al. Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability. Adv. Funct. Mater. 20, 1917–1923 (2010).
(
10.1002/adfm.200902336
) / Adv. Funct. Mater. by R Zarnetta (2010) -
Rodriguez, E. L. & Filisko, F. E. Thermoelastic temperature changes in poly(methyl methacrylate) at high hydrostatic pressure: Experimental. J. Appl. Phys. 53, 6536–6540 (1982).
(
10.1063/1.330081
) / J. Appl. Phys. by EL Rodriguez (1982) -
Sun, Y., Kamarad, J., Arnold, Z., Kou, Z.-Q. & Cheng, Z.-H. Tuning of magnetocaloric effect in a La0.69Ca0.31MnO3 single crystal by pressure. Appl. Phys. Lett. 88, 102505 (2006).
(
10.1063/1.2183824
) / Appl. Phys. Lett. by Y Sun (2006) -
Albertini, F. et al. Pressure effects on the magnetocaloric properties of Ni-rich and Mn-rich Ni2MnGa alloys. J. Magn. Magn. Mater. 316, 364–367 (2007).
(
10.1016/j.jmmm.2007.03.020
) / J. Magn. Magn. Mater. by F Albertini (2007) -
Lyubina, J., Nenkov, K., Schultz, L. & Gutfleisch, O. Multiple metamagnetic transitions in the magnetic refrigerant La(Fe,Si)13Hx . Phys. Rev. Lett. 101, 177203 (2008).
(
10.1103/PhysRevLett.101.177203
) / Phys. Rev. Lett. by J Lyubina (2008) -
Liu, J., Gottschall, T., Skokov, K. P., Moore, J. D. & Gutfleisch, O. Giant magnetocaloric effect driven by structural transitions. Nature Mater. 11, 620–626 (2012).
(
10.1038/nmat3334
) / Nature Mater. by J Liu (2012) -
Morellon, L. et al. Pressure enhancement of the giant magnetocaloric effect in Tb5Si2Ge2 . Phys. Rev. Lett. 93, 137201 (2004).
(
10.1103/PhysRevLett.93.137201
) / Phys. Rev. Lett. by L Morellon (2004) -
Samara, G. A. Pressure and temperature dependence of the dielectric properties and phase transitions of the ferroelectric perovskites: PbTiO3 and BaTiO3 . Ferroelectrics 2, 277–289 (1971).
(
10.1080/00150197108234102
) / Ferroelectrics by GA Samara (1971) -
Pertsev, N. A., Zembilgotov, A. G. & Tagantsev, A. K. Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Phys. Rev. Lett. 80, 1988–1991 (1998).
(
10.1103/PhysRevLett.80.1988
) / Phys. Rev. Lett. by NA Pertsev (1998) -
Akcay, G., Alpay, S. P., Rossetti, G. A. Jr & Scott, J. F. Influence of mechanical boundary conditions on the electrocaloric properties of ferroelectric thin films. J. Appl. Phys. 103, 024104 (2008).
(
10.1063/1.2831222
) / J. Appl. Phys. by G Akcay (2008) -
Qiu, J. H. & Jiang, Q. Misfit strain dependence of electrocaloric effect in epitaxial Pb(Zr1− xTix)O3 thin films. J. Appl. Phys. 103, 084105 (2008).
(
10.1063/1.2908861
) / J. Appl. Phys. by JH Qiu (2008) -
Liu, Z. K., Li, X. & Zhang, Q. M. Maximizing the number of coexisting phases near invariant critical points for giant electrocaloric and electromechanical responses in ferroelectrics. Appl. Phys. Lett. 101, 082904 (2012).
(
10.1063/1.4747275
) / Appl. Phys. Lett. by ZK Liu (2012) -
Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3 . Nature 430, 758–761 (2004).
(
10.1038/nature02773
) / Nature by JH Haeni (2004) -
Mosca, D. H., Vidal, F. & Etgens, V. H. Strain engineering of the magnetocaloric effect in MnAs epilayers. Phys. Rev. Lett. 101, 125503 (2008).
(
10.1103/PhysRevLett.101.125503
) / Phys. Rev. Lett. by DH Mosca (2008) -
Moya, X. et al. Giant and reversible extrinsic magnetocaloric effects in La0.7Ca0.3MnO3 films due to strain. Nature Mater. 12, 52–58 (2013).
(
10.1038/nmat3463
) / Nature Mater. by X Moya (2013) - Sattar, M. A., Saidur, R. & Masjuki, H. H. Performance investigation of domestic refrigerator using pure hydrocarbons and blends of hydrocarbons as refrigerants. World Acad. Sci. Eng. Technol. 29, 223–228 (2007). / World Acad. Sci. Eng. Technol. by MA Sattar (2007)
-
Wood, M. E. & Potter, W. H. General analysis of magnetic refrigeration and its optimization using a new concept: maximization of refrigerant capacity. Cryogenics 25, 667–683 (1985).
(
10.1016/0011-2275(85)90187-0
) / Cryogenics by ME Wood (1985) - Brown, G. V. & Papell, S. S. Regeneration tests of a room temperature magnetic refrigerator and heat pump. Available at http://arxiv.org/abs/1402.3343 (2014). Unpublished 1978 manuscript now available online.
-
Richard, M.-A., Rowe, A. M. & Chahine, R. Magnetic refrigeration: Single and multimaterial active magnetic regenerator experiments. J. Appl. Phys. 95, 2146–2150 (2004).
(
10.1063/1.1643200
) / J. Appl. Phys. by M-A Richard (2004) - Mathur, N. & Mischenko, A. Solid state electrocaloric cooling devices and methods. GB patent no. PCT/GB2005/050207 (2005).
- Basiulis, A. & Berry, R. L. Solid-state electrocaloric cooling system and method. US patent no. 4,757,688 (1988).
-
Annaorazov, M. P., Nikitin, S. A., Tyurin, A. L., Akopyan, S. A. & Myndyev, R. W. Heat pump cycles based on the AF–F transition in Fe–Rh alloys induced by tensile stress. Int. J. Refrig. 25, 1034–1042 (2002).
(
10.1016/S0140-7007(02)00028-2
) / Int. J. Refrig. by MP Annaorazov (2002) -
Quarini, J. & Prince, A. Solid state refrigeration: cooling and refrigeration using crystalline phase changes in metal alloys. Proc. Inst. Mech. Eng. C–J Mech. Eng. Sci. 218, 1175–1179 (2004).
(
10.1243/0954406042369062
) / Proc. Inst. Mech. Eng. C–J Mech. Eng. Sci. by J Quarini (2004) -
Yao, G. H., Gong, M. Q. & Wu, J. F. Experimental study on the performance of a room temperature magnetic refrigerator using permanent magnets. Int. J. Refrig. 29, 1267–1273 (2006).
(
10.1016/j.ijrefrig.2006.07.010
) / Int. J. Refrig. by GH Yao (2006) -
Zimm, C. et al. Description and performance of a near-room temperature magnetic refrigerator. Adv. Cryog. Eng. 43, 1759–1766 (1998).
(
10.1007/978-1-4757-9047-4_222
) / Adv. Cryog. Eng. by C Zimm (1998) -
Sinyavsky, Yu. & Brodyansky, V. M. Experimental testing of electrocaloric cooling with transparent ferroelectric ceramic as working body. Ferroelectrics 131, 321–325 (1992).
(
10.1080/00150199208223433
) / Ferroelectrics by Yu Sinyavsky (1992) -
Jia, Y. & Ju, Y. S. A solid-state refrigerator based on the electrocaloric effect. Appl. Phys. Lett. 100, 242901 (2012).
(
10.1063/1.4729038
) / Appl. Phys. Lett. by Y Jia (2012) -
Gu, H. et al. A chip scale electrocaloric effect based cooling device. Appl. Phys. Lett. 102, 122904 (2013).
(
10.1063/1.4799283
) / Appl. Phys. Lett. by H Gu (2013) -
Crossley, S., McGinnigle, J. R., Kar-Narayan, S. & Mathur, N. D. Finite-element optimisation of electrocaloric multilayer capacitors. Appl. Phys. Lett. 104, 082909 (2014).
(
10.1063/1.4866256
) / Appl. Phys. Lett. by S Crossley (2014) -
Takeuchi, I. et al. Identification of novel compositions of ferromagnetic shape-memory alloys using composition spreads. Nature Mater. 2, 180–184 (2003).
(
10.1038/nmat829
) / Nature Mater. by I Takeuchi (2003) -
Es'kov, A. V., Karmanenko, S. F., Pakhomov, O. V. & Starkov, A. S. Simulation of a solid-state cooler with electrocaloric elements. Phys. Solid State 51, 1574–1577 (2009).
(
10.1134/S1063783409080083
) / Phys. Solid State by AV Es'kov (2009) -
Hwalek, J. & Carr, E. F. A liquid crystal 'heat switch'. Heat Transfer Eng. 8, 36–39 (1987).
(
10.1080/01457638708962785
) / Heat Transfer Eng. by J Hwalek (1987) -
Epstein, R. I. & Malloy, K. J. Electrocaloric devices based on thin-film heat switches. J. Appl. Phys. 106, 064509 (2009).
(
10.1063/1.3190559
) / J. Appl. Phys. by RI Epstein (2009) -
Chang, C. W., Okawa, D., Majumdar, A. & Zettl, A. Solid-state thermal rectifier. Science 314, 1121–1124 (2006).
(
10.1126/science.1132898
) / Science by CW Chang (2006) -
Kobayashi, W., Teraoka, Y. & Terasaki, I. An oxide thermal rectifier. Appl. Phys. Lett. 95, 171905 (2009).
(
10.1063/1.3253712
) / Appl. Phys. Lett. by W Kobayashi (2009) -
Castán, T., Planes, A. & Saxena, A. Thermodynamics of ferrotoroidic materials: Toroidocaloric effect. Phys. Rev. B 85, 144429 (2012).
(
10.1103/PhysRevB.85.144429
) / Phys. Rev. B by T Castán (2012) -
Lu, S. G. et al. Thermally mediated multiferroic composites for the magnetoelectric materials. Appl. Phys. Lett. 96, 102902 (2010).
(
10.1063/1.3358133
) / Appl. Phys. Lett. by SG Lu (2010) -
Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).
(
10.1038/35050040
) / Nature by H Ohno (2000) -
Wada, H. & Tanabe, Y. Giant magnetocaloric effect of MnAs1− xSbx . Appl. Phys. Lett. 79, 3302–3304 (2001).
(
10.1063/1.1419048
) / Appl. Phys. Lett. by H Wada (2001) -
Tegus, O. Brück, E., Buschow, K. H. J. & de Boer, F. R. Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415, 150–152 (2002).
(
10.1038/415150a
) / Nature by O Tegus (2002) -
Trung, N. T., Zhang, L., Caron, L., Buschow, K. H. J. & Brück, E. Giant magnetocaloric effects by tailoring the phase transitions. Appl. Phys. Lett. 96, 172504 (2010).
(
10.1063/1.3399773
) / Appl. Phys. Lett. by NT Trung (2010) -
Hu, F.-X., Shen, B.-G., Sun, J.-R. & Wu, G.-H. Large magnetic entropy change in a Heusler alloy Ni52.6Mn23.1Ga24.3 single crystal. Phys. Rev. B 64, 132412 (2001).
(
10.1103/PhysRevB.64.132412
) / Phys. Rev. B by F-X Hu (2001) -
Pasquale, M. et al. Magnetostructural transition and magnetocaloric effect in Ni55Mn20Ga25 single crystals. Phys. Rev. B 72, 094435 (2005).
(
10.1103/PhysRevB.72.094435
) / Phys. Rev. B by M Pasquale (2005) -
Krenke, T. et al. Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nature Mater. 4, 450–454 (2005).
(
10.1038/nmat1395
) / Nature Mater. by T Krenke (2005) -
Khan, M., Ali, N. & Stadler, S. Inverse magnetocaloric effect in ferromagnetic Ni50Mn37+ xSb13− x Heusler alloys. J. Appl. Phys. 101, 053919 (2007).
(
10.1063/1.2710779
) / J. Appl. Phys. by M Khan (2007) -
Aksoy, S. et al. Tailoring magnetic and magnetocaloric properties of martensitic transitions in ferromagnetic Heusler alloys. Appl. Phys. Lett. 91, 241916 (2007).
(
10.1063/1.2825283
) / Appl. Phys. Lett. by S Aksoy (2007) -
Sandeman, K. G. et al. Negative magnetocaloric effect from highly sensitive metamagnetism in CoMnSi1− xGex . Phys. Rev. B 74, 224436 (2006).
(
10.1103/PhysRevB.74.224436
) / Phys. Rev. B by KG Sandeman (2006) -
Shebanovs, L., Borman, K., Lawless, W. N. & Kalvane, A. Electrocaloric effect in some perovskite ferroelectric ceramics and multilayer capacitors. Ferroelectrics 273, 137–142 (2002).
(
10.1080/00150190211761
) / Ferroelectrics by L Shebanovs (2002) -
Hagberg, J., Uusimäki, A. & Jantunen, H. Electrocaloric characteristics in reactive sintered 0.87 Pb(Mg1/3Nb2/3)O3-0.13 PbTiO3 . Appl. Phys. Lett. 92, 132909 (2008).
(
10.1063/1.2905296
) / Appl. Phys. Lett. by J Hagberg (2008) -
Sebald, G. et al. Electrocaloric and pyroelectric properties of 0.75Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 single crystals. J. Appl. Phys. 100, 124112 (2006).
(
10.1063/1.2407271
) / J. Appl. Phys. by G Sebald (2006) -
Olsen, R. B., Butler, W. F., Payne, D. A., Tuttle, B. A. & Held, P. C. Observation of a polarocaloric (electrocaloric) effect of 2 °C in lead zirconate modified with Sn4+ and Ti4+. Phys. Rev. Lett. 45, 1436–1438 (1980).
(
10.1103/PhysRevLett.45.1436
) / Phys. Rev. Lett. by RB Olsen (1980) -
Peng, B., Fan, H. & Zhang, Q. A giant electrocaloric effect in nanoscale antiferroelectric and ferroelectric phases coexisting in a relaxor Pb0.8Ba0.2ZrO3 thin film at room temperature. Adv. Funct. Mater. 23, 2987–2992 (2013).
(
10.1002/adfm.201202525
) / Adv. Funct. Mater. by B Peng (2013) -
Chen, H., Ren, T.-L., Wu, X.-M., Yang, Y. & Liu, L.-T. Giant electrocaloric effect in lead-free thin film of strontium bismuth tantalite. Appl. Phys. Lett. 94, 182902 (2009).
(
10.1063/1.3123817
) / Appl. Phys. Lett. by H Chen (2009) -
Mischenko, A. S., Zhang, Q., Whatmore, R. W., Scott, J. F. & Mathur, N. D. Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9 PbMg1/3Nb2/3O3-0.1 PbTiO3 near room temperature. Appl. Phys. Lett. 89, 242912 (2006).
(
10.1063/1.2405889
) / Appl. Phys. Lett. by AS Mischenko (2006) -
Correia, T. M. et al. Investigation of the electrocaloric effect in a PbMg1/3Nb2/3O3-PbTiO3 relaxor thin film. Appl. Phys. Lett. 95, 182904 (2009).
(
10.1063/1.3257695
) / Appl. Phys. Lett. by TM Correia (2009) -
Saranya, D., Chaudhuri, A. R., Parui, J. & Krupanidhi, S. B. Electrocaloric effect of PMN-PT thin films near morphotropic phase boundary. Bull. Mater. Sci. 32, 259–262 (2009).
(
10.1007/s12034-009-0039-3
) / Bull. Mater. Sci. by D Saranya (2009) -
Liu, P. F. et al. Huge electrocaloric effect in Langmuir–Blodgett ferroelectric polymer thin films. New J. Phys. 12, 023035 (2010).
(
10.1088/1367-2630/12/2/023035
) / New J. Phys. by PF Liu (2010) -
Li, X. et al. Giant electrocaloric effect in ferroelectric poly(vinylidenefluoride-trifluoroethylene) copolymers near a first-order ferroelectric transition. Appl. Phys. Lett. 101, 132903 (2012).
(
10.1063/1.4756697
) / Appl. Phys. Lett. by X Li (2012) -
Nikitin, S. A., Skokov, K. P., Koshkid'ko, Yu. S., Pastushenkov, Yu. G. & Ivanova, T. I. Giant rotating magnetocaloric effect in the region of spin-reorientation transition in the NdCo5 single crystal. Phys. Rev. Lett. 105, 137205 (2010).
(
10.1103/PhysRevLett.105.137205
) / Phys. Rev. Lett. by SA Nikitin (2010) -
Caron, L. et al. On the determination of the magnetic entropy change in materials with first-order transitions. J. Magn. Magn. Mater. 321, 3559–3566 (2009).
(
10.1016/j.jmmm.2009.06.086
) / J. Magn. Magn. Mater. by L Caron (2009) - Crossley, S. Electrocaloric Materials and Devices PhD thesis, Univ. Cambridge (2013); www.repository.cam.ac.uk/handle/1810/245063 / Electrocaloric Materials and Devices by S Crossley (2013)
-
Moore, J. D., Skokov, K. P., Liu, J. & Gutfleisch, O. Procedure for numerical integration of the magnetocaloric effect. J. Appl. Phys. 112, 063920 (2012).
(
10.1063/1.4754561
) / J. Appl. Phys. by JD Moore (2012) -
Bai, Y., Ding, K., Zheng, G.-P., Shi, S.-Q. & Qiao, L. Entropy-change measurement of electrocaloric effect of BaTiO3 single crystal. Phys. Status Solidi A 209, 941–944 (2012).
(
10.1002/pssa.201127695
) / Phys. Status Solidi A by Y Bai (2012)
Dates
Type | When |
---|---|
Created | 11 years, 4 months ago (April 22, 2014, 1:49 a.m.) |
Deposited | 3 years, 1 month ago (July 6, 2022, 3:35 p.m.) |
Indexed | 38 minutes ago (Aug. 27, 2025, 2:20 p.m.) |
Issued | 11 years, 4 months ago (April 22, 2014) |
Published | 11 years, 4 months ago (April 22, 2014) |
Published Online | 11 years, 4 months ago (April 22, 2014) |
Published Print | 11 years, 3 months ago (May 1, 2014) |
@article{Moya_2014, title={Caloric materials near ferroic phase transitions}, volume={13}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat3951}, DOI={10.1038/nmat3951}, number={5}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Moya, X. and Kar-Narayan, S. and Mathur, N. D.}, year={2014}, month=apr, pages={439–450} }