Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Ding, S., Liu, Y., Li, Y., Liu, Z., Sohn, S., Walker, F. J., & Schroers, J. (2014). Combinatorial development of bulk metallic glasses. Nature Materials, 13(5), 494–500.

Authors 7
  1. Shiyan Ding (first)
  2. Yanhui Liu (additional)
  3. Yanglin Li (additional)
  4. Ze Liu (additional)
  5. Sungwoo Sohn (additional)
  6. Fred J. Walker (additional)
  7. Jan Schroers (additional)
References 41 Referenced 217
  1. Cui, J. et al. Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nature Mater. 5, 286–290 (2006). (10.1038/nmat1593) / Nature Mater. by J Cui (2006)
  2. Johnson, W. L. Bulk glass-forming metallic alloys: science and technology. Mater. Res. Soc. Bull. 24, 42–56 (1999). (10.1557/S0883769400053252) / Mater. Res. Soc. Bull. by WL Johnson (1999)
  3. Wang, W. H. Roles of minor additions in formation and properties of bulk metallic glasses. Prog. Mater. Sci. 52, 540–596 (2007). (10.1016/j.pmatsci.2006.07.003) / Prog. Mater. Sci. by WH Wang (2007)
  4. Inoue, A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279–306 (2000). (10.1016/S1359-6454(99)00300-6) / Acta Mater. by A Inoue (2000)
  5. Sheng, H. W., Luo, W. K., Alamgir, F. M., Bai, J. M. & Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419–425 (2006). (10.1038/nature04421) / Nature by HW Sheng (2006)
  6. Inoue, A., Shen, B. L., Koshiba, H., Kato, H. & Yavari, A. R. Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties. Nature Mater. 2, 661–663 (2003). (10.1038/nmat982) / Nature Mater. by A Inoue (2003)
  7. Pauly, S., Gorantla, S., Wang, G., Kuhn, U. & Eckert, J. Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nature Mater. 9, 473–477 (2010). (10.1038/nmat2767) / Nature Mater. by S Pauly (2010)
  8. Demetriou, M. D. et al. A damage-tolerant glass. Nature Mater. 10, 123–128 (2011). (10.1038/nmat2930) / Nature Mater. by MD Demetriou (2011)
  9. Liu, Y. H. et al. Super plastic bulk metallic glasses at room temperature. Science 315, 1385–1388 (2007). (10.1126/science.1136726) / Science by YH Liu (2007)
  10. Kumar, G., Tang, H. X. & Schroers, J. Nanomoulding with amorphous metals. Nature 457, 868–872 (2009). (10.1038/nature07718) / Nature by G Kumar (2009)
  11. Klement, W., Willens, R. H. & Duwez, P. Non-crystalline structure in solidified gold–silicon alloys. Nature 187, 869–870 (1960). (10.1038/187869b0) / Nature by W Klement (1960)
  12. Turnbull, D. Under what conditions can a glass be formed. Contemp. Phys. 10, 473–488 (1969). (10.1080/00107516908204405) / Contemp. Phys. by D Turnbull (1969)
  13. Greer, A. L. Metallic glasses. Science 267, 1947–1953 (1995). (10.1126/science.267.5206.1947) / Science by AL Greer (1995)
  14. Wang, D., Tan, H. & Li, Y. Multiple maxima of GFA in three adjacent eutectics in Zr–Cu–Al alloy system—A metallographic way to pinpoint the best glass forming alloys. Acta Mater. 53, 2969–2979 (2005). (10.1016/j.actamat.2005.03.012) / Acta Mater. by D Wang (2005)
  15. Miracle, D. B. A structural model for metallic glasses. Nature Mater. 3, 697–702 (2004). (10.1038/nmat1219) / Nature Mater. by DB Miracle (2004)
  16. Fujita, T. et al. Atomic-scale heterogeneity of a multicomponent bulk metallic glass with excellent glass forming ability. Phys. Rev. Lett. 103, 075502 (2009). (10.1103/PhysRevLett.103.075502) / Phys. Rev. Lett. by T Fujita (2009)
  17. Egami, T. Universal criterion for metallic glass formation. Mater. Sci. Eng. A 226, 261–267 (1997). (10.1016/S0921-5093(97)80041-X) / Mater. Sci. Eng. A by T Egami (1997)
  18. Lu, Z. P. & Liu, C. T. Glass formation criterion for various glass-forming systems. Phys. Rev. Lett. 91, 115505 (2003). (10.1103/PhysRevLett.91.115505) / Phys. Rev. Lett. by ZP Lu (2003)
  19. Li, Y., Guo, Q., Kalb, J. A. & Thompson, C. V. Matching glass-forming ability with the density of the amorphous phase. Science 322, 1816–1819 (2008). (10.1126/science.1163062) / Science by Y Li (2008)
  20. Park, E. S. & Kim, D. H. Correlation between volumetric change and glass-forming ability of metallic glass-forming alloys. Appl. Phys. Lett. 92, 091915 (2008). (10.1063/1.2889442) / Appl. Phys. Lett. by ES Park (2008)
  21. Park, E. S., Kim, D. H. & Kim, W. T. Parameter for glass forming ability of ternary alloy systems. Appl. Phys. Lett. 86, 061907 (2005). (10.1063/1.1862790) / Appl. Phys. Lett. by ES Park (2005)
  22. Bendert, J. C., Gangopadhyay, A. K., Mauro, N. A. & Kelton, K. F. Volume expansion measurements in metallic liquids and their relation to fragility and glass forming ability: an energy landscape interpretation. Phys. Rev. Lett. 109, 185901 (2012). (10.1103/PhysRevLett.109.185901) / Phys. Rev. Lett. by JC Bendert (2012)
  23. Ding, S. Y., Gregoire, J., Vlassak, J. J. & Schroers, J. Solidification of Au–Cu–Si alloys investigated by a combinatorial approach. J. Appl. Phys. 111, 114901 (2012). (10.1063/1.4722996) / J. Appl. Phys. by SY Ding (2012)
  24. Schroers, J. Processing of bulk metallic glass. Adv. Mater. 22, 1566–1597 (2010). (10.1002/adma.200902776) / Adv. Mater. by J Schroers (2010)
  25. Busch, R. The thermophysical properties of bulk metallic glass-forming liquids. Jom-J. Min. Met. Mat. Soc. 52, 39–42 (2000). (10.1007/s11837-000-0160-7) / Jom-J. Min. Met. Mat. Soc. by R Busch (2000)
  26. Saotome, Y., Itoh, K., Zhang, T. & Inoue, A. Superplastic nanoforming of Pd-based amorphous alloy. Scr. Mater. 44, 1541–1545 (2001). (10.1016/S1359-6462(01)00837-5) / Scr. Mater. by Y Saotome (2001)
  27. Schroers, J. On the formability of bulk metallic glass in its supercooled liquid state. Acta Mater. 56, 471–478 (2008). (10.1016/j.actamat.2007.10.008) / Acta Mater. by J Schroers (2008)
  28. Long, Z. L. et al. A new criterion for predicting the glass-forming ability of bulk metallic glasses. J. Alloy Compd. 475, 207–219 (2009). (10.1016/j.jallcom.2008.07.087) / J. Alloy Compd. by ZL Long (2009)
  29. Fan, G. J. & Fecht, H. J. A cluster model for the viscous flow of glass-forming liquids. J. Chem. Phys. 116, 5002–5006 (2002). (10.1063/1.1448494) / J. Chem. Phys. by GJ Fan (2002)
  30. Nieh, T. G., Wadsworth, J., Liu, C. T., Ohkubo, T. & Hirotsu, Y. Plasticity and structural instability in a bulk metallic glass deformed in the supercooled liquid region. Acta Mater. 49, 2887–2896 (2001). (10.1016/S1359-6454(01)00218-X) / Acta Mater. by TG Nieh (2001)
  31. Waniuk, T. A., Schroers, J. & Johnson, W. L. Critical cooling rate and thermal stability of Zr–Ti–Cu–Ni–Be alloys. Appl. Phys. Lett. 78, 1213–1215 (2001). (10.1063/1.1350624) / Appl. Phys. Lett. by TA Waniuk (2001)
  32. Busch, R., Schroers, J. & Wang, W. H. Thermodynamics and kinetics of bulk metallic glass. Mater. Res. Soc. Bull. 32, 620–623 (2007). (10.1557/mrs2007.122) / Mater. Res. Soc. Bull. by R Busch (2007)
  33. Ma, H., Zheng, Q., Xu, J., Li, Y. & Ma, E. Doubling the critical size for bulk metallic glass formation in the Mg–Cu–Y ternary system. J. Mater. Res. 20, 2252–2255 (2005). (10.1557/jmr.2005.0307) / J. Mater. Res. by H Ma (2005)
  34. Inoue, A., Kato, A., Zhang, T., Kim, S. G. & Masumoto, T. Mg–Cu–Y amorphous-alloys with high mechanical strengths produced by a metallic mold casting method. Mater. T. Jim. 32, 609–616 (1991). (10.2320/matertrans1989.32.609) / Mater. T. Jim. by A Inoue (1991)
  35. Pitt, E. B., Kumar, G. & Schroers, J. Temperature dependence of the thermoplastic formability in bulk metallic glasses. J. Appl. Phys. 110, 043518 (2011). (10.1063/1.3624666) / J. Appl. Phys. by EB Pitt (2011)
  36. Deng, Y. P. et al. A combinatorial thin film sputtering approach for synthesizing and characterizing ternary ZrCuAl metallic glasses. Intermetallics 15, 1208–1216 (2007). (10.1016/j.intermet.2007.02.011) / Intermetallics by YP Deng (2007)
  37. Li, Y., Guo, Q., Kalb, J. A. & Thompson, C. V. Matching glass-forming ability with the density of the amorphous phase. Science 322, 1816–1819 (2008). (10.1126/science.1163062) / Science by Y Li (2008)
  38. Guo, Q. et al. Density change upon crystallization of amorphous Zr–Cu–Al thin films. Acta Mater. 58, 3633–3641 (2010). (10.1016/j.actamat.2010.02.033) / Acta Mater. by Q Guo (2010)
  39. Bohmer, R., Ngai, K. L., Angell, C. A. & Plazek, D. J. Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 99, 4201–4209 (1993). (10.1063/1.466117) / J. Chem. Phys. by R Bohmer (1993)
  40. Sarac, B. et al. Three-dimensional shell fabrication using blow molding of bulk metallic glass. J. Microelectromech. Sys. 20, 28–36 (2011). (10.1109/JMEMS.2010.2090495) / J. Microelectromech. Sys. by B Sarac (2011)
  41. Busch, R., Liu, W. & Johnson, W. L. Thermodynamics and kinetics of the Mg65Cu25Y10 bulk metallic glass forming liquid. J. Appl. Phys. 83, 4134–4141 (1998). (10.1063/1.367167) / J. Appl. Phys. by R Busch (1998)
Dates
Type When
Created 11 years, 4 months ago (April 11, 2014, 12:58 a.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 3:35 p.m.)
Indexed 2 weeks, 1 day ago (Aug. 6, 2025, 8:28 a.m.)
Issued 11 years, 4 months ago (April 13, 2014)
Published 11 years, 4 months ago (April 13, 2014)
Published Online 11 years, 4 months ago (April 13, 2014)
Published Print 11 years, 3 months ago (May 1, 2014)
Funders 0

None

@article{Ding_2014, title={Combinatorial development of bulk metallic glasses}, volume={13}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat3939}, DOI={10.1038/nmat3939}, number={5}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Ding, Shiyan and Liu, Yanhui and Li, Yanglin and Liu, Ze and Sohn, Sungwoo and Walker, Fred J. and Schroers, Jan}, year={2014}, month=apr, pages={494–500} }