Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Daskalakis, K. S., Maier, S. A., Murray, R., & Kéna-Cohen, S. (2014). Nonlinear interactions in an organic polariton condensate. Nature Materials, 13(3), 271–278.

Authors 4
  1. K. S. Daskalakis (first)
  2. S. A. Maier (additional)
  3. R. Murray (additional)
  4. S. Kéna-Cohen (additional)
References 45 Referenced 414
  1. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013). (10.1103/RevModPhys.85.299) / Rev. Mod. Phys. by I Carusotto (2013)
  2. Kavokin, A. Microcavities (Oxford Univ. Press, (2007). (10.1093/acprof:oso/9780199228942.001.0001) / Microcavities by A Kavokin (2007)
  3. Savona, V., Tassone, F., Piermarocchi, C., Quattropani, A. & Schwendimann, P. Theory of polariton photoluminescence in arbitrary semiconductor microcavity structures. Phys. Rev. B 53, 13051–13062 (1996). (10.1103/PhysRevB.53.13051) / Phys. Rev. B by V Savona (1996)
  4. Tassone, F. & Yamamoto, Y. Exciton–exciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons. Phys. Rev. B 59, 10830–10842 (1999). (10.1103/PhysRevB.59.10830) / Phys. Rev. B by F Tassone (1999)
  5. Christmann, G. et al. Polariton ring condensates and sunflower ripples in an expanding quantum liquid. Phys. Rev. B 85, 235303 (2012). (10.1103/PhysRevB.85.235303) / Phys. Rev. B by G Christmann (2012)
  6. Sanvitto, D. et al. All-optical control of the quantum flow of a polariton condensate. Nature Photon. 5, 610–614 (2011). (10.1038/nphoton.2011.211) / Nature Photon. by D Sanvitto (2011)
  7. Roumpos, G. et al. Single vortex-antivortex pair in an exciton-polariton condensate. Nature Phys. 7, 129–133 (2011). (10.1038/nphys1841) / Nature Phys. by G Roumpos (2011)
  8. Amo, A. et al. Polariton superfluids reveal quantum hydrodynamic solitons. Science 332, 1167–1170 (2011). (10.1126/science.1202307) / Science by A Amo (2011)
  9. Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nature Phys. 5, 805–810 (2009). (10.1038/nphys1364) / Nature Phys. by A Amo (2009)
  10. Lagoudakis, K. G. et al. Quantized vortices in an exciton-polariton condensate. Nature Phys. 4, 706–710 (2008). (10.1038/nphys1051) / Nature Phys. by KG Lagoudakis (2008)
  11. Carusotto, I. & Ciuti, C. Probing microcavity polariton superfluidity through resonant Rayleigh scattering. Phys. Rev. Lett. 93, 166401 (2004). (10.1103/PhysRevLett.93.166401) / Phys. Rev. Lett. by I Carusotto (2004)
  12. Dang, L.S., Heger, D., André, R., Boeuf, F. & Romestain, R. Stimulation of polariton photoluminescence in semiconductor microcavity. Phys. Rev. Lett. 81, 3920–3923 (1998). (10.1103/PhysRevLett.81.3920) / Phys. Rev. Lett. by LS Dang (1998)
  13. Deng, H., Weihs, G., Snoke, D., Bloch, J. & Yamamoto, Y. Polariton lasing vs. photon lasing in a semiconductor microcavity. Proc. Natl Acad. Sci. USA 100, 15318–15323 (2003). (10.1073/pnas.2634328100) / Proc. Natl Acad. Sci. USA by H Deng (2003)
  14. Imamoglu, A., Ram, R. J., Pau, S. & Yamamoto, Y. Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers. Phys. Rev. A 53, 4250–4253 (1996). (10.1103/PhysRevA.53.4250) / Phys. Rev. A by A Imamoglu (1996)
  15. Deng, H., Haug, H. & Yamamoto, Y. Exciton-polariton Bose–Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010). (10.1103/RevModPhys.82.1489) / Rev. Mod. Phys. by H Deng (2010)
  16. Wouters, M. & Carusotto, I. Excitations in a nonequilibrium Bose–Einstein condensate of exciton polaritons. Phys. Rev. Lett. 99, 140402 (2007). (10.1103/PhysRevLett.99.140402) / Phys. Rev. Lett. by M Wouters (2007)
  17. Lu, T-C. et al. Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity. Opt. Express 20, 5530–5537 (2012). (10.1364/OE.20.005530) / Opt. Express by T-C Lu (2012)
  18. Li, F. et al. From excitonic to photonic polariton condensate in a ZnO-based microcavity. Phys. Rev. Lett. 110, 196406 (2013). (10.1103/PhysRevLett.110.196406) / Phys. Rev. Lett. by F Li (2013)
  19. Daskalakis, K. S. et al. All-dielectric GaN microcavity: Strong coupling and lasing at room temperature. Appl. Phys. Lett. 102, 101113–101113 (2013). (10.1063/1.4795019) / Appl. Phys. Lett. by KS Daskalakis (2013)
  20. Christopoulos, S. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007). (10.1103/PhysRevLett.98.126405) / Phys. Rev. Lett. by S Christopoulos (2007)
  21. Lidzey, D. G. et al. Strong exciton–photon coupling in an organic semiconductor microcavity. Nature 395, 53–55 (1998). (10.1038/25692) / Nature by DG Lidzey (1998)
  22. Kéna-Cohen, S., Davanço, M. & Forrest, S. R. Strong exciton–photon coupling in an organic single crystal microcavity. Phys. Rev. Lett. 101, 116401 (2008). (10.1103/PhysRevLett.101.116401) / Phys. Rev. Lett. by S Kéna-Cohen (2008)
  23. Kéna-Cohen, S. & Forrest, S. R. Room-temperature polariton lasing in an organic single-crystal microcavity. Nature Photon. 4, 371–375 (2010). (10.1038/nphoton.2010.86) / Nature Photon. by S Kéna-Cohen (2010)
  24. Ciuti, C., Savona, V., Piermarocchi, C., Quattropani, A. & Schwendimann, P. Role of the exchange of carriers in elastic exciton–exciton scattering in quantum wells. Phys. Rev. B 58, 7926–7933 (1998). (10.1103/PhysRevB.58.7926) / Phys. Rev. B by C Ciuti (1998)
  25. Mazza, L., Kéna-Cohen, S., Michetti, P. & La Rocca, G. C. Microscopic theory of polariton lasing via vibronically assisted scattering. Phys. Rev. B 88, 075321 (2013). (10.1103/PhysRevB.88.075321) / Phys. Rev. B by L Mazza (2013)
  26. Mazza, L., Fontanesi, L. & La Rocca, G. C. Organic-based microcavities with vibronic progressions: Photoluminescence. Phys. Rev. B 80, 235314 (2009). (10.1103/PhysRevB.80.235314) / Phys. Rev. B by L Mazza (2009)
  27. Slootsky, M., Zhang, Y. & Forrest, S. R. Temperature dependence of polariton lasing in a crystalline anthracene microcavity. Phys. Rev. B 86, 045312 (2012). (10.1103/PhysRevB.86.045312) / Phys. Rev. B by M Slootsky (2012)
  28. Utsunomiya, S. et al. Observation of Bogoliubov excitations in exciton-polariton condensates. Nature Phys. 4, 700–705 (2008). (10.1038/nphys1034) / Nature Phys. by S Utsunomiya (2008)
  29. Litinskaya, M. Exciton polariton kinematic interaction in crystalline organic microcavities. Phys. Rev. B 77, 155325 (2008). (10.1103/PhysRevB.77.155325) / Phys. Rev. B by M Litinskaya (2008)
  30. Bittner, E. R. & Silva, C. Estimating the conditions for polariton condensation in organic thin-film microcavities. J. Chem. Phys. 136, 034510 (2012). (10.1063/1.3678015) / J. Chem. Phys. by ER Bittner (2012)
  31. Zoubi, H. & La Rocca, G. C. Exciton–polariton kinematic interactions in organic microcavities. Phys. Rev. B 72, 125306 (2005). (10.1103/PhysRevB.72.125306) / Phys. Rev. B by H Zoubi (2005)
  32. Agranovich, V. M., Litinskaia, M. & Lidzey, D. G. Cavity polaritons in microcavities containing disordered organic semiconductors. Phys. Rev. B 67, 085311 (2003). (10.1103/PhysRevB.67.085311) / Phys. Rev. B by VM Agranovich (2003)
  33. Michetti, P. & La Rocca, G. C. Polariton states in disordered organic microcavities. Phys. Rev. B 71, 115320 (2005). (10.1103/PhysRevB.71.115320) / Phys. Rev. B by P Michetti (2005)
  34. Wouters, M., Liew, T. C. H. & Savona, V. Energy relaxation in one-dimensional polariton condensates. Phys. Rev. B 82, 245315 (2010). (10.1103/PhysRevB.82.245315) / Phys. Rev. B by M Wouters (2010)
  35. Kéna-Cohen, S., Maier, S. A. & Bradley, D. D. C. Ultrastrongly coupled exciton–polaritons in metal-clad organic semiconductor microcavities. Adv. Opt. Mater. 1, 827–833 (2013). (10.1002/adom.201300256) / Adv. Opt. Mater. by S Kéna-Cohen (2013)
  36. Lin, H-W. et al. Anisotropic optical properties and molecular orientation in vacuum-deposited ter(9,9-diarylfluorene)s thin films using spectroscopic ellipsometry. J. Appl. Phys. 95, 881–886 (2004). (10.1063/1.1635991) / J. Appl. Phys. by H-W Lin (2004)
  37. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006). (10.1038/nature05131) / Nature by J Kasprzak (2006)
  38. Porras, D & Tejedor, C. Linewidth of a polariton laser: Theoretical analysis of self-interaction effects. Phys. Rev. B 67, 161310 (2003). (10.1103/PhysRevB.67.161310) / Phys. Rev. B by D Porras (2003)
  39. Litinskaya, M., Reineker, P. & Agranovich, V. M. Fast polariton relaxation in strongly coupled organic microcavities. J. Lumin. 110, 364–372 (2004). (10.1016/j.jlumin.2004.08.033) / J. Lumin. by M Litinskaya (2004)
  40. Toffanin, S. et al. Molecular host–guest energy-transfer system with an ultralow amplified spontaneous emission threshold employing an ambipolar semiconducting host matrix. J. Phys. Chem. B 114, 120–127 (2009). (10.1021/jp909003n) / J. Phys. Chem. B by S Toffanin (2009)
  41. Deng, H., Solomon, G. S., Hey, R., Ploog, K. H. & Yamamoto, Y. Spatial coherence of a polariton condensate. Phys. Rev. Lett. 99, 126403 (2007). (10.1103/PhysRevLett.99.126403) / Phys. Rev. Lett. by H Deng (2007)
  42. Wouters, M., Carusotto, I. & Ciuti, C. Spatial and spectral shape of inhomogeneous nonequilibrium exciton-polariton condensates. Phys. Rev. B 77, 115340 (2008). (10.1103/PhysRevB.77.115340) / Phys. Rev. B by M Wouters (2008)
  43. Snoke, D. Exciton Polaritons in Microcavities 307–327 (Springer, (2012). (10.1007/978-3-642-24186-4_12) / Exciton Polaritons in Microcavities by D Snoke (2012)
  44. Wu, C. C., Lin, Y. T., Wong, K. T., Chen, R. T. & Chien, Y. Y. Efficient organic blue-light-emitting devices with double confinement on terfluorenes with ambipolar carrier transport properties. Adv. Mater. 16, 61–65 (2004). (10.1002/adma.200305619) / Adv. Mater. by CC Wu (2004)
  45. Panzarini, G. et al. Cavity-polariton dispersion and polarization splitting in single and coupled semiconductor microcavities. Phys. Solid State 41, 1223–1238 (1999). (10.1134/1.1130973) / Phys. Solid State by G Panzarini (1999)
Dates
Type When
Created 11 years, 6 months ago (Feb. 7, 2014, 5:27 a.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 3:33 p.m.)
Indexed 6 days, 21 hours ago (Aug. 23, 2025, 9:40 p.m.)
Issued 11 years, 6 months ago (Feb. 9, 2014)
Published 11 years, 6 months ago (Feb. 9, 2014)
Published Online 11 years, 6 months ago (Feb. 9, 2014)
Published Print 11 years, 5 months ago (March 1, 2014)
Funders 0

None

@article{Daskalakis_2014, title={Nonlinear interactions in an organic polariton condensate}, volume={13}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat3874}, DOI={10.1038/nmat3874}, number={3}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Daskalakis, K. S. and Maier, S. A. and Murray, R. and Kéna-Cohen, S.}, year={2014}, month=feb, pages={271–278} }