Crossref
journal-article
Springer Science and Business Media LLC
Nature Materials (297)
References
33
Referenced
616
- Pitaevskii, L. & Stringari, S. Bose–Einstein Condensation (Clarendon, 2003). / Bose–Einstein Condensation by L Pitaevskii (2003)
-
Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton–photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).
(
10.1103/PhysRevLett.69.3314
) / Phys. Rev. Lett. by C Weisbuch (1992) -
Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).
(
10.1038/nature05131
) / Nature by J Kasprzak (2006) -
Lagoudakis, K. G. et al. Quantized vortices in an exciton–polariton condensate. Nature Phys. 4, 706–710 (2008).
(
10.1038/nphys1051
) / Nature Phys. by KG Lagoudakis (2008) -
Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nature Phys. 5, 805–810 (2009).
(
10.1038/nphys1364
) / Nature Phys. by A Amo (2009) -
Kéna-Cohen, S. & Forrest, S. R. Room-temperature polariton lasing in an organic single-crystal microcavity. Nature Photon. 4, 371–375 (2010).
(
10.1038/nphoton.2010.86
) / Nature Photon. by S Kéna-Cohen (2010) -
Malpuech, G., Solnyshkov, D. D., Ouerdane, H., Glazov, M. M. & Shelykh, I. Bose glass and superfluid phases of cavity polaritons. Phys. Rev. Lett. 98, 206402 (2007).
(
10.1103/PhysRevLett.98.206402
) / Phys. Rev. Lett. by G Malpuech (2007) -
Baas, A. et al. Synchronized and desynchronized phases of exciton–polariton condensates in the presence of disorder. Phys. Rev. Lett. 100, 170401 (2008).
(
10.1103/PhysRevLett.100.170401
) / Phys. Rev. Lett. by A Baas (2008) -
Krizhanovskii, D. N. et al. Coexisting nonequilibrium condensates with long-range spatial coherence in semiconductor microcavities. Phys. Rev. B 80, 045317 (2009).
(
10.1103/PhysRevB.80.045317
) / Phys. Rev. B by DN Krizhanovskii (2009) -
Kavokin, A. V., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities (Oxford Univ. Press, 2007).
(
10.1093/acprof:oso/9780199228942.001.0001
) / Microcavities by AV Kavokin (2007) -
Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).
(
10.1103/RevModPhys.85.299
) / Rev. Mod. Phys. by I Carusotto (2013) -
Deng, H., Weihs, G., Santori, C., Bloch, J. & Yamamoto, Y. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002).
(
10.1126/science.1074464
) / Science by H Deng (2002) -
Christopoulos, S. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007).
(
10.1103/PhysRevLett.98.126405
) / Phys. Rev. Lett. by S Christopoulos (2007) -
Guillet, T. et al. Polariton lasing in a hybrid bulk ZnO microcavity. Appl. Phys. Lett. 99, 161104 (2011).
(
10.1063/1.3650268
) / Appl. Phys. Lett. by T Guillet (2011) -
Lidzey, D. G. et al. Strong exciton–photon coupling in an organic semiconductor microcavity. Nature 395, 53–55 (1998).
(
10.1038/25692
) / Nature by DG Lidzey (1998) -
Lidzey, D. G. et al. Room temperature polariton emission from strongly coupled organic semiconductor microcavities. Phys. Rev. Lett. 82, 3316 (1999).
(
10.1103/PhysRevLett.82.3316
) / Phys. Rev. Lett. by DG Lidzey (1999) -
Holmes, R. J. & Forrest, S. R. Strong exciton–photon coupling and exciton hybridization in a thermally evaporated polycrystalline film of an organic small molecule. Phys. Rev. Lett. 93, 186404 (2004).
(
10.1103/PhysRevLett.93.186404
) / Phys. Rev. Lett. by RJ Holmes (2004) -
Coles, D. M. et al. Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities. Adv. Funct. Mater. 21, 3691–3696 (2011).
(
10.1002/adfm.201100756
) / Adv. Funct. Mater. by DM Coles (2011) -
Mazza, L., Kéna-Cohen, S., Michetti, P. & La Rocca, G. C. Microscopic theory of polariton lasing via vibronically assisted scattering. Phys. Rev. B 88, 075321 (2013).
(
10.1103/PhysRevB.88.075321
) / Phys. Rev. B by L Mazza (2013) -
Tassone, F., Piermarocchi, C., Savona, V., Quattropani, A. & Schwendimann, F. Bottleneck effects in the relaxation and photoluminescence of microcavity polaritons. Phys. Rev. B. 56, 7554–7563 (1997).
(
10.1103/PhysRevB.56.7554
) / Phys. Rev. B. by F Tassone (1997) -
Bajoni, D., Senellart, P., Lemaître, A. & Bloch, J. Photon lasing in GaAs microcavity: Similarities with a polariton condensate. Phys. Rev. B 76, 201305 (2007).
(
10.1103/PhysRevB.76.201305
) / Phys. Rev. B by D Bajoni (2007) -
Kammann, E., Ohadi, H., Maragkou, M., Kavokin, A. V. & Lagoudakis, P. G. Crossover from photon to exciton–polariton lasing. New J. Phys. 14, 105003 (2012).
(
10.1088/1367-2630/14/10/105003
) / New J. Phys. by E Kammann (2012) -
Schweitzer, B. et al. The optical gain mechanism in solid conjugated polymers. Appl. Phys. Lett. 72, 2933–2935 (1998).
(
10.1063/1.121498
) / Appl. Phys. Lett. by B Schweitzer (1998) - Siegman, A.E. Lasers (Univ. Science Books, 1986). / Lasers by AE Siegman (1986)
-
Deng, H., Weihs, G., Snoke, D., Bloch, J. & Yamamoto, Y. Polariton lasing versus photon lasing in a semiconductor microcavity. Proc. Natl Acad. Sci. USA 100, 15318–15323 (2003).
(
10.1073/pnas.2634328100
) / Proc. Natl Acad. Sci. USA by H Deng (2003) -
Tempel, J-S. et al. Characterization of two-threshold behavior of the emission from a GaAs microcavity. Phys. Rev. B 85, 075318 (2012).
(
10.1103/PhysRevB.85.075318
) / Phys. Rev. B by J-S Tempel (2012) -
Cerullo, G. et al. Excited-state dynamics of poly(para-phenylene)-type ladder polymers at high photoexcitation density. Phys. Rev. B 57, 12806–12811 (1998).
(
10.1103/PhysRevB.57.12806
) / Phys. Rev. B by G Cerullo (1998) -
Arakawa, Y. & Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939–941 (1982).
(
10.1063/1.92959
) / Appl. Phys. Lett. by Y Arakawa (1982) -
Baumann, K. et al. Ultra-small footprint photonic crystal lasers with organic gain material. Proc. SPIE 6999, 699906 (2008).
(
10.1117/12.782990
) / Proc. SPIE by K Baumann (2008) -
Ramos-Ortiz, G., Spiegelberg, C., Peyghambarian, N. & Kippelen, B. Temperature dependence of the threshold for laser emission in polymer microlasers. Appl. Phys. Lett. 77, 2783–2785 (2000).
(
10.1063/1.1320871
) / Appl. Phys. Lett. by G Ramos-Ortiz (2000) -
Amo, A. et al. Polariton superfluids reveal quantum hydrodynamic solitons. Science 332, 1167–1170 (2011).
(
10.1126/science.1202307
) / Science by A Amo (2011) -
Schneider, C. et al. An electrically pumped polariton laser. Nature 497, 348–352.
(
10.1038/nature12036
) -
Scherf, U., Bohnen, A. & Müllen, K. Polyarylenes and poly(arylenevinylene)s,9 The oxidized states of a (1,4-phenylene) ladder polymer. Makromol. Chem. 193, 1127–1133 (1992).
(
10.1002/macp.1992.021930511
) / Makromol. Chem. by U Scherf (1992)
Dates
Type | When |
---|---|
Created | 11 years, 8 months ago (Dec. 6, 2013, 12:26 a.m.) |
Deposited | 3 years, 1 month ago (July 6, 2022, 3:34 p.m.) |
Indexed | 6 days, 22 hours ago (Aug. 23, 2025, 9:11 p.m.) |
Issued | 11 years, 8 months ago (Dec. 8, 2013) |
Published | 11 years, 8 months ago (Dec. 8, 2013) |
Published Online | 11 years, 8 months ago (Dec. 8, 2013) |
Published Print | 11 years, 5 months ago (March 1, 2014) |
@article{Plumhof_2013, title={Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer}, volume={13}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat3825}, DOI={10.1038/nmat3825}, number={3}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Plumhof, Johannes D. and Stöferle, Thilo and Mai, Lijian and Scherf, Ullrich and Mahrt, Rainer F.}, year={2013}, month=dec, pages={247–252} }