Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Plumhof, J. D., Stöferle, T., Mai, L., Scherf, U., & Mahrt, R. F. (2013). Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer. Nature Materials, 13(3), 247–252.

Authors 5
  1. Johannes D. Plumhof (first)
  2. Thilo Stöferle (additional)
  3. Lijian Mai (additional)
  4. Ullrich Scherf (additional)
  5. Rainer F. Mahrt (additional)
References 33 Referenced 616
  1. Pitaevskii, L. & Stringari, S. Bose–Einstein Condensation (Clarendon, 2003). / Bose–Einstein Condensation by L Pitaevskii (2003)
  2. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton–photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992). (10.1103/PhysRevLett.69.3314) / Phys. Rev. Lett. by C Weisbuch (1992)
  3. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006). (10.1038/nature05131) / Nature by J Kasprzak (2006)
  4. Lagoudakis, K. G. et al. Quantized vortices in an exciton–polariton condensate. Nature Phys. 4, 706–710 (2008). (10.1038/nphys1051) / Nature Phys. by KG Lagoudakis (2008)
  5. Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nature Phys. 5, 805–810 (2009). (10.1038/nphys1364) / Nature Phys. by A Amo (2009)
  6. Kéna-Cohen, S. & Forrest, S. R. Room-temperature polariton lasing in an organic single-crystal microcavity. Nature Photon. 4, 371–375 (2010). (10.1038/nphoton.2010.86) / Nature Photon. by S Kéna-Cohen (2010)
  7. Malpuech, G., Solnyshkov, D. D., Ouerdane, H., Glazov, M. M. & Shelykh, I. Bose glass and superfluid phases of cavity polaritons. Phys. Rev. Lett. 98, 206402 (2007). (10.1103/PhysRevLett.98.206402) / Phys. Rev. Lett. by G Malpuech (2007)
  8. Baas, A. et al. Synchronized and desynchronized phases of exciton–polariton condensates in the presence of disorder. Phys. Rev. Lett. 100, 170401 (2008). (10.1103/PhysRevLett.100.170401) / Phys. Rev. Lett. by A Baas (2008)
  9. Krizhanovskii, D. N. et al. Coexisting nonequilibrium condensates with long-range spatial coherence in semiconductor microcavities. Phys. Rev. B 80, 045317 (2009). (10.1103/PhysRevB.80.045317) / Phys. Rev. B by DN Krizhanovskii (2009)
  10. Kavokin, A. V., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities (Oxford Univ. Press, 2007). (10.1093/acprof:oso/9780199228942.001.0001) / Microcavities by AV Kavokin (2007)
  11. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013). (10.1103/RevModPhys.85.299) / Rev. Mod. Phys. by I Carusotto (2013)
  12. Deng, H., Weihs, G., Santori, C., Bloch, J. & Yamamoto, Y. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002). (10.1126/science.1074464) / Science by H Deng (2002)
  13. Christopoulos, S. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007). (10.1103/PhysRevLett.98.126405) / Phys. Rev. Lett. by S Christopoulos (2007)
  14. Guillet, T. et al. Polariton lasing in a hybrid bulk ZnO microcavity. Appl. Phys. Lett. 99, 161104 (2011). (10.1063/1.3650268) / Appl. Phys. Lett. by T Guillet (2011)
  15. Lidzey, D. G. et al. Strong exciton–photon coupling in an organic semiconductor microcavity. Nature 395, 53–55 (1998). (10.1038/25692) / Nature by DG Lidzey (1998)
  16. Lidzey, D. G. et al. Room temperature polariton emission from strongly coupled organic semiconductor microcavities. Phys. Rev. Lett. 82, 3316 (1999). (10.1103/PhysRevLett.82.3316) / Phys. Rev. Lett. by DG Lidzey (1999)
  17. Holmes, R. J. & Forrest, S. R. Strong exciton–photon coupling and exciton hybridization in a thermally evaporated polycrystalline film of an organic small molecule. Phys. Rev. Lett. 93, 186404 (2004). (10.1103/PhysRevLett.93.186404) / Phys. Rev. Lett. by RJ Holmes (2004)
  18. Coles, D. M. et al. Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities. Adv. Funct. Mater. 21, 3691–3696 (2011). (10.1002/adfm.201100756) / Adv. Funct. Mater. by DM Coles (2011)
  19. Mazza, L., Kéna-Cohen, S., Michetti, P. & La Rocca, G. C. Microscopic theory of polariton lasing via vibronically assisted scattering. Phys. Rev. B 88, 075321 (2013). (10.1103/PhysRevB.88.075321) / Phys. Rev. B by L Mazza (2013)
  20. Tassone, F., Piermarocchi, C., Savona, V., Quattropani, A. & Schwendimann, F. Bottleneck effects in the relaxation and photoluminescence of microcavity polaritons. Phys. Rev. B. 56, 7554–7563 (1997). (10.1103/PhysRevB.56.7554) / Phys. Rev. B. by F Tassone (1997)
  21. Bajoni, D., Senellart, P., Lemaître, A. & Bloch, J. Photon lasing in GaAs microcavity: Similarities with a polariton condensate. Phys. Rev. B 76, 201305 (2007). (10.1103/PhysRevB.76.201305) / Phys. Rev. B by D Bajoni (2007)
  22. Kammann, E., Ohadi, H., Maragkou, M., Kavokin, A. V. & Lagoudakis, P. G. Crossover from photon to exciton–polariton lasing. New J. Phys. 14, 105003 (2012). (10.1088/1367-2630/14/10/105003) / New J. Phys. by E Kammann (2012)
  23. Schweitzer, B. et al. The optical gain mechanism in solid conjugated polymers. Appl. Phys. Lett. 72, 2933–2935 (1998). (10.1063/1.121498) / Appl. Phys. Lett. by B Schweitzer (1998)
  24. Siegman, A.E. Lasers (Univ. Science Books, 1986). / Lasers by AE Siegman (1986)
  25. Deng, H., Weihs, G., Snoke, D., Bloch, J. & Yamamoto, Y. Polariton lasing versus photon lasing in a semiconductor microcavity. Proc. Natl Acad. Sci. USA 100, 15318–15323 (2003). (10.1073/pnas.2634328100) / Proc. Natl Acad. Sci. USA by H Deng (2003)
  26. Tempel, J-S. et al. Characterization of two-threshold behavior of the emission from a GaAs microcavity. Phys. Rev. B 85, 075318 (2012). (10.1103/PhysRevB.85.075318) / Phys. Rev. B by J-S Tempel (2012)
  27. Cerullo, G. et al. Excited-state dynamics of poly(para-phenylene)-type ladder polymers at high photoexcitation density. Phys. Rev. B 57, 12806–12811 (1998). (10.1103/PhysRevB.57.12806) / Phys. Rev. B by G Cerullo (1998)
  28. Arakawa, Y. & Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939–941 (1982). (10.1063/1.92959) / Appl. Phys. Lett. by Y Arakawa (1982)
  29. Baumann, K. et al. Ultra-small footprint photonic crystal lasers with organic gain material. Proc. SPIE 6999, 699906 (2008). (10.1117/12.782990) / Proc. SPIE by K Baumann (2008)
  30. Ramos-Ortiz, G., Spiegelberg, C., Peyghambarian, N. & Kippelen, B. Temperature dependence of the threshold for laser emission in polymer microlasers. Appl. Phys. Lett. 77, 2783–2785 (2000). (10.1063/1.1320871) / Appl. Phys. Lett. by G Ramos-Ortiz (2000)
  31. Amo, A. et al. Polariton superfluids reveal quantum hydrodynamic solitons. Science 332, 1167–1170 (2011). (10.1126/science.1202307) / Science by A Amo (2011)
  32. Schneider, C. et al. An electrically pumped polariton laser. Nature 497, 348–352. (10.1038/nature12036)
  33. Scherf, U., Bohnen, A. & Müllen, K. Polyarylenes and poly(arylenevinylene)s,9 The oxidized states of a (1,4-phenylene) ladder polymer. Makromol. Chem. 193, 1127–1133 (1992). (10.1002/macp.1992.021930511) / Makromol. Chem. by U Scherf (1992)
Dates
Type When
Created 11 years, 8 months ago (Dec. 6, 2013, 12:26 a.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 3:34 p.m.)
Indexed 6 days, 22 hours ago (Aug. 23, 2025, 9:11 p.m.)
Issued 11 years, 8 months ago (Dec. 8, 2013)
Published 11 years, 8 months ago (Dec. 8, 2013)
Published Online 11 years, 8 months ago (Dec. 8, 2013)
Published Print 11 years, 5 months ago (March 1, 2014)
Funders 0

None

@article{Plumhof_2013, title={Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer}, volume={13}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat3825}, DOI={10.1038/nmat3825}, number={3}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Plumhof, Johannes D. and Stöferle, Thilo and Mai, Lijian and Scherf, Ullrich and Mahrt, Rainer F.}, year={2013}, month=dec, pages={247–252} }