Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Hu, Y.-Y., Liu, Z., Nam, K.-W., Borkiewicz, O. J., Cheng, J., Hua, X., Dunstan, M. T., Yu, X., Wiaderek, K. M., Du, L.-S., Chapman, K. W., Chupas, P. J., Yang, X.-Q., & Grey, C. P. (2013). Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nature Materials, 12(12), 1130–1136.

Authors 14
  1. Yan-Yan Hu (first)
  2. Zigeng Liu (additional)
  3. Kyung-Wan Nam (additional)
  4. Olaf J. Borkiewicz (additional)
  5. Jun Cheng (additional)
  6. Xiao Hua (additional)
  7. Matthew T. Dunstan (additional)
  8. Xiqian Yu (additional)
  9. Kamila M. Wiaderek (additional)
  10. Lin-Shu Du (additional)
  11. Karena W. Chapman (additional)
  12. Peter J. Chupas (additional)
  13. Xiao-Qing Yang (additional)
  14. Clare P. Grey (additional)
References 37 Referenced 679
  1. Idota, Y., Kubota, T., Matsufuji, A., Maekawa, Y. & Miyasaka, T. Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science 276, 1395–1397 (1997). (10.1126/science.276.5317.1395) / Science by Y Idota (1997)
  2. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000). (10.1038/35035045) / Nature by P Poizot (2000)
  3. Amatucci, G. G. & Pereira, N. Fluoride based electrode materials for advanced energy storage devices. J. Fluor. Chem. 128, 243–262 (2007). (10.1016/j.jfluchem.2006.11.016) / J. Fluor. Chem. by GG Amatucci (2007)
  4. Balaya, P., Li, H., Kienle, L. & Maier, J. Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity. Adv. Funct. Mater. 13, 621–625 (2003). (10.1002/adfm.200304406) / Adv. Funct. Mater. by P Balaya (2003)
  5. Badway, F., Cosandey, F., Pereira, N. & Amatucci, G. G. Carbon metal fluoride nanocomposites—high-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries. J. Electrochem. Soc. 150, A1318–A1327 (2003). (10.1149/1.1602454) / J. Electrochem. Soc. by F Badway (2003)
  6. Li, H., Balaya, P. & Maier, J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J. Electrochem. Soc. 151, A1878–A1885 (2004). (10.1149/1.1801451) / J. Electrochem. Soc. by H Li (2004)
  7. Li, H., Richter, G. & Maier, J. Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries. Adv. Mater. 15, 736–739 (2003). (10.1002/adma.200304574) / Adv. Mater. by H Li (2003)
  8. Liao, P., MacDonald, B. L., Dunlap, R. A. & Dahn, J. R. Combinatorially prepared [LiF](1-x)Fe-x nanocomposites for positive electrode materials in Li-ion batteries. Chem. Mater. 20, 454–461 (2008). (10.1021/cm702656k) / Chem. Mater. by P Liao (2008)
  9. Cabana, J., Monconduit, L., Larcher, D. & Palacin, M. R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192 (2010). (10.1002/adma.201000717) / Adv. Mater. by J Cabana (2010)
  10. Beaulieu, L. Y., Larcher, D., Dunlap, R. A. & Dahn, J. R. Reaction of Li with grain-boundary atoms in nanostructured compounds. J. Electrochem. Soc. 147, 3206–3212 (2000). (10.1149/1.1393884) / J. Electrochem. Soc. by LY Beaulieu (2000)
  11. Laruelle, S. et al. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J. Electrochem. Soc. 149, A627–A634 (2002). (10.1149/1.1467947) / J. Electrochem. Soc. by S Laruelle (2002)
  12. Jamnik, J. & Maier, J. Nanocrystallinity effects in lithium battery materials— Aspects of nano-ionics. Part IV. Phys. Chem. Chem. Phys. 5, 5215–5220 (2003). (10.1039/b309130a) / Phys. Chem. Chem. Phys. by J Jamnik (2003)
  13. Maier, J. Mass storage in space charge regions of nano-sized systems (Nano-ionics. Part V). Faraday Discuss. 134, 51–66 (2007). (10.1039/B603559K) / Faraday Discuss. by J Maier (2007)
  14. Zhukovskii, Y. F., Balaya, P., Kotomin, E. A. & Maier, J. Evidence for interfacial-storage anomaly in nanocomposites for lithium batteries from first-principles simulations. Phys. Rev. Lett. 96, 058302 (2006). (10.1103/PhysRevLett.96.058302) / Phys. Rev. Lett. by YF Zhukovskii (2006)
  15. Zhukovskii, Y. F., Balaya, P., Dolle, M., Kotomin, E. A. & Maier, J. Enhanced lithium storage and chemical diffusion in metal-LiF nanocomposites: Experimental and theoretical results. Phys. Rev. B 76, 235414 (2007). (10.1103/PhysRevB.76.235414) / Phys. Rev. B by YF Zhukovskii (2007)
  16. Ponrouch, A., Taberna, P. L., Simon, P. & Palacin, M. R. On the origin of the extra capacity at low potential in materials for Li batteries reacting through conversion reaction. Electrochim. Acta 61, 13–18 (2012). (10.1016/j.electacta.2011.11.029) / Electrochim. Acta by A Ponrouch (2012)
  17. Menkin, S., Golodnitsky, D. & Peled, E. Artificial solid–electrolyte interphase (SEI) for improved cycleability and safety of lithium-ion cells for EV applications. Electrochem. Commun. 11, 1789–1791 (2009). (10.1016/j.elecom.2009.07.019) / Electrochem. Commun. by S Menkin (2009)
  18. Peled, E., Golodnitsky, D., Ulus, A. & Yufit, V. Effect of carbon substrate on SEI composition and morphology. Electrochim. Acta 50, 391–395 (2004). (10.1016/j.electacta.2004.01.130) / Electrochim. Acta by E Peled (2004)
  19. Eshkenazi, V., Peled, E., Burstein, L. & Golodnitsky, D. XPS analysis of the SEI formed on carbonaceous materials. Solid State Ion. 170, 83–91 (2004). (10.1016/S0167-2738(03)00107-3) / Solid State Ion. by V Eshkenazi (2004)
  20. Ohzuku, T., Sawai, K. & Hirai, T. Topotactic 2-phase reaction of ruthenium dioxide (rutile) in lithium nonaqueous cell. J. Electrochem. Soc. 137, 3004–3010 (1990). (10.1149/1.2086149) / J. Electrochem. Soc. by T Ohzuku (1990)
  21. Munoz-Rojas, D., Casas-Cabanas, M. & Baudrin, E. Effect of particle size and cell parameter mismatch on the lithium insertion/deinsertion processes into RuO2 . Solid State Ion. 181, 536–544 (2010). (10.1016/j.ssi.2010.02.021) / Solid State Ion. by D Munoz-Rojas (2010)
  22. Bekaert, E., Balaya, P., Murugavel, S., Maier, J. & Menetrier, M. Li-6 MAS NMR investigation of electrochemical lithiation of RuO2: Evidence for an interfacial storage mechanism. Chem. Mater. 21, 856–861 (2009). (10.1021/cm8028005) / Chem. Mater. by E Bekaert (2009)
  23. Gmitter, A. J. et al. Formation, dynamics, and implication of solid electrolyte interphase in high voltage reversible conversion fluoride nanocomposites. J. Mater. Chem. 20, 4149–4161 (2010). (10.1039/b923908a) / J. Mater. Chem. by AJ Gmitter (2010)
  24. Leskes, M. et al. Direct detection of discharge products in lithium–oxygen batteries by solid-state NMR spectroscopy. Angew. Chem. Int. Ed. 51, 8560–8563 (2012). (10.1002/anie.201202183) / Angew. Chem. Int. Ed. by M Leskes (2012)
  25. Mackenzie, K.J.D., Smith, & M. E., Multinuclear Solid-State NMR of Inorganic Materials Ch. 6 (Pergamon, 2002). / Multinuclear Solid-State NMR of Inorganic Materials by KJD Mackenzie (2002)
  26. Ma, Z. R., Zheng, J. P. & Fu, R. Q. Solid state NMR investigation of hydrous ruthenium oxide. Chem. Phys. Lett. 331, 64–70 (2000). (10.1016/S0009-2614(00)01169-6) / Chem. Phys. Lett. by ZR Ma (2000)
  27. Delmer, O. Size and morphology effects on the cell voltage of Li-batteries: Case Study of RuO 2. PhD thesis, Max Planck Institute, (2009).
  28. Zhuang, G. V., Yang, H., Ross, P. N., Xu, K. & Jow, T. R. Lithium methyl carbonate as a reaction product of metallic lithium and dimethyl carbonate. Electrochem. Solid State 9, A64–A68 (2006). (10.1149/1.2142157) / Electrochem. Solid State by GV Zhuang (2006)
  29. Borkiewicz, O. J. et al. The AMPIX electrochemical cell: A versatile apparatus for in situ X-ray scattering and spectroscopic measurements. J. Appl. Crystallogr. 45, 1261–1269 (2012). (10.1107/S0021889812042720) / J. Appl. Crystallogr. by OJ Borkiewicz (2012)
  30. Chupas, P. J. et al. Rapid-acquisition pair distribution function (RA-PDF) analysis. J. Appl. Crystallogr. 36, 1342–1347 (2003). (10.1107/S0021889803017564) / J. Appl. Crystallogr. by PJ Chupas (2003)
  31. Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N. & Hausermann, D. Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Press. Res. 14, 235–248 (1996). (10.1080/08957959608201408) / High Press. Res. by AP Hammersley (1996)
  32. Qui, X., Thompson, J. W. & Billinge, S. J. L. PDFgetX2: A GUI driven program to obtain the pair distribution function from X-ray powder diffraction data. J. Appl. Crystalogr. 37, 678 (2004). (10.1107/S0021889804011744) / J. Appl. Crystalogr. by X Qui (2004)
  33. Farrow, C. L. et al. PDFfit2 and PDFgui: Computer programs for studying nanostructure in crystals. J. Phys. Condens. Mater. 19, 335219 (2007). (10.1088/0953-8984/19/33/335219) / J. Phys. Condens. Mater. by CL Farrow (2007)
  34. Wojdyr, M. Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr. 43, 1126–1128 (2010). (10.1107/S0021889810030499) / J. Appl. Crystallogr. by M Wojdyr (2010)
  35. Giannozzi, P. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Mater. 21 (2009). / Journal of Physics: Condensed Matter by Paolo Giannozzi (2009)
  36. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). (10.1103/PhysRevLett.77.3865) / Phys. Rev. Lett. by JP Perdew (1996)
  37. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990). (10.1103/PhysRevB.41.7892) / Phys. Rev. B by D Vanderbilt (1990)
Dates
Type When
Created 11 years, 9 months ago (Oct. 31, 2013, 2:19 a.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 2:46 p.m.)
Indexed 30 minutes ago (Aug. 21, 2025, 1:08 a.m.)
Issued 11 years, 9 months ago (Nov. 3, 2013)
Published 11 years, 9 months ago (Nov. 3, 2013)
Published Online 11 years, 9 months ago (Nov. 3, 2013)
Published Print 11 years, 8 months ago (Dec. 1, 2013)
Funders 0

None

@article{Hu_2013, title={Origin of additional capacities in metal oxide lithium-ion battery electrodes}, volume={12}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat3784}, DOI={10.1038/nmat3784}, number={12}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Hu, Yan-Yan and Liu, Zigeng and Nam, Kyung-Wan and Borkiewicz, Olaf J. and Cheng, Jun and Hua, Xiao and Dunstan, Matthew T. and Yu, Xiqian and Wiaderek, Kamila M. and Du, Lin-Shu and Chapman, Karena W. and Chupas, Peter J. and Yang, Xiao-Qing and Grey, Clare P.}, year={2013}, month=nov, pages={1130–1136} }