Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Wang, C., Hwang, D., Yu, Z., Takei, K., Park, J., Chen, T., Ma, B., & Javey, A. (2013). User-interactive electronic skin for instantaneous pressure visualization. Nature Materials, 12(10), 899–904.

Authors 8
  1. Chuan Wang (first)
  2. David Hwang (additional)
  3. Zhibin Yu (additional)
  4. Kuniharu Takei (additional)
  5. Junwoo Park (additional)
  6. Teresa Chen (additional)
  7. Biwu Ma (additional)
  8. Ali Javey (additional)
References 30 Referenced 1,097
  1. Someya, T. et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl Acad. Sci. USA 101, 9966–9970 (2004). (10.1073/pnas.0401918101) / Proc. Natl Acad. Sci. USA by T Someya (2004)
  2. Someya, T. et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl Acad. Sci. USA 102, 12321–12325 (2005). (10.1073/pnas.0502392102) / Proc. Natl Acad. Sci. USA by T Someya (2005)
  3. Wagner, S. et al. Electronic skin: Architecture and components. Physica E 25, 326–334 (2004). (10.1016/j.physe.2004.06.032) / Physica E by S Wagner (2004)
  4. Sekitani, T. & Someya, T. Stretchable, large-area organic electronics. Adv. Mater. 22, 2228–2246 (2010). (10.1002/adma.200904054) / Adv. Mater. by T Sekitani (2010)
  5. Takei, K. et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Mater. 9, 821–826 (2010). (10.1038/nmat2835) / Nature Mater. by K Takei (2010)
  6. Mannsfeld, S. C. B. et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature Mater. 9, 859–864 (2010). (10.1038/nmat2834) / Nature Mater. by SCB Mannsfeld (2010)
  7. Kim, D. H. et al. Epidermal electronics. Science 333, 838–843 (2011). (10.1126/science.1206157) / Science by DH Kim (2011)
  8. Lipomi, D. J. et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotech. 6, 788–792 (2011). (10.1038/nnano.2011.184) / Nature Nanotech. by DJ Lipomi (2011)
  9. Takahashi, T., Takei, K., Gillies, A. G., Fearing, R. S. & Javey, A. Carbon nanotube active-matrix backplanes for conformal electronics and sensors. Nano Lett. 11, 5408–5413 (2011). (10.1021/nl203117h) / Nano Lett. by T Takahashi (2011)
  10. Tee, B. C-K., Wang, C., Allen, R. & Bao, Z. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nature Nanotech. 7, 825–831 (2012). (10.1038/nnano.2012.192) / Nature Nanotech. by BC-K Tee (2012)
  11. Lu, N., Lu, C., Yang, S. & Rogers, J. Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv. Funct. Mater. 22, 4044–4050 (2012). (10.1002/adfm.201200498) / Adv. Funct. Mater. by N Lu (2012)
  12. Pang, C. et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nature Mater. 11, 795–801 (2012). (10.1038/nmat3380) / Nature Mater. by C Pang (2012)
  13. Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010). (10.1126/science.1182383) / Science by JA Rogers (2010)
  14. Kim, D. H., Xiao, J., Song, J., Huang, Y. & Rogers, J. A. Stretchable, curvilinear electronics based on inorganic materials. Adv. Mater. 22, 2108–2124 (2010). (10.1002/adma.200902927) / Adv. Mater. by DH Kim (2010)
  15. Sekitani, T. et al. Organic nonvolatile memory transistors for flexible sensor arrays. Science 326, 1516–1519 (2009). (10.1126/science.1179963) / Science by T Sekitani (2009)
  16. Park, S-I. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 325, 977–981 (2009). (10.1126/science.1175690) / Science by S-I Park (2009)
  17. Wang, C., Takei, K., Takahashi, T. & Javey, A. Carbon nanotube electronics—moving forward. Chem. Soc. Rev. 42, 2592–2609 (2013). (10.1039/C2CS35325C) / Chem. Soc. Rev. by C Wang (2013)
  18. Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I. & Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotech. 1, 60–65 (2006). (10.1038/nnano.2006.52) / Nature Nanotech. by MS Arnold (2006)
  19. Cao, Q. et al. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454, 495–500 (2008). (10.1038/nature07110) / Nature by Q Cao (2008)
  20. Sun, D. et al. Flexible high-performance carbon nanotube integrated circuits. Nature Nanotech. 6, 156–161 (2011). (10.1038/nnano.2011.1) / Nature Nanotech. by D Sun (2011)
  21. Cao, Q. & Rogers, J. A. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects. Adv. Mater. 21, 29–53 (2009). (10.1002/adma.200801995) / Adv. Mater. by Q Cao (2009)
  22. Zhang, J. et al. Separated carbon nanotube macroelectronics for active matrix organic light-emitting diode displays. Nano Lett. 11, 4852–4858 (2011). (10.1021/nl202695v) / Nano Lett. by J Zhang (2011)
  23. Tang, C. W. & VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987). (10.1063/1.98799) / Appl. Phys. Lett. by CW Tang (1987)
  24. Hussain, M., Choa, Y-H. & Niihara, K. Conductive rubber materials for pressure sensors. J. Mater. Sci. Lett. 20, 525–527 (2001). (10.1023/A:1010972315505) / J. Mater. Sci. Lett. by M Hussain (2001)
  25. Shimojo, M., Namiki, A., Ishikawa, M., Makino, R. & Mabuchi, K. A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method. IEEE Sensors J. 4, 589–596 (2004). (10.1109/JSEN.2004.833152) / IEEE Sensors J. by M Shimojo (2004)
  26. McAlpine, M. C., Ahmad, H., Wang, D. & Heath, J. R. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nature Mater. 6, 379–384 (2007). (10.1038/nmat1891) / Nature Mater. by MC McAlpine (2007)
  27. Tian, B. Z. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830–834 (2010). (10.1126/science.1192033) / Science by BZ Tian (2010)
  28. Ko, H. C. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748–753 (2008). (10.1038/nature07113) / Nature by HC Ko (2008)
  29. Ramuz, M., Tee, B. C-K., Tok, J. B-H. & Bao, Z. Transparent, optical, pressure sensitive artificial skin for large-area stretchable electronics. Adv. Mater. 24, 3223–3227 (2012). (10.1002/adma.201200523) / Adv. Mater. by M Ramuz (2012)
  30. Yamada, T. et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotech. 6, 296–301 (2011). (10.1038/nnano.2011.36) / Nature Nanotech. by T Yamada (2011)
Dates
Type When
Created 12 years, 1 month ago (July 19, 2013, 3:05 a.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 2:31 p.m.)
Indexed 1 day, 3 hours ago (Aug. 21, 2025, 2 p.m.)
Issued 12 years, 1 month ago (July 21, 2013)
Published 12 years, 1 month ago (July 21, 2013)
Published Online 12 years, 1 month ago (July 21, 2013)
Published Print 11 years, 10 months ago (Oct. 1, 2013)
Funders 0

None

@article{Wang_2013, title={User-interactive electronic skin for instantaneous pressure visualization}, volume={12}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat3711}, DOI={10.1038/nmat3711}, number={10}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Wang, Chuan and Hwang, David and Yu, Zhibin and Takei, Kuniharu and Park, Junwoo and Chen, Teresa and Ma, Biwu and Javey, Ali}, year={2013}, month=jul, pages={899–904} }