Crossref
journal-article
Springer Science and Business Media LLC
Nature Materials (297)
References
30
Referenced
1,097
-
Someya, T. et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl Acad. Sci. USA 101, 9966–9970 (2004).
(
10.1073/pnas.0401918101
) / Proc. Natl Acad. Sci. USA by T Someya (2004) -
Someya, T. et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl Acad. Sci. USA 102, 12321–12325 (2005).
(
10.1073/pnas.0502392102
) / Proc. Natl Acad. Sci. USA by T Someya (2005) -
Wagner, S. et al. Electronic skin: Architecture and components. Physica E 25, 326–334 (2004).
(
10.1016/j.physe.2004.06.032
) / Physica E by S Wagner (2004) -
Sekitani, T. & Someya, T. Stretchable, large-area organic electronics. Adv. Mater. 22, 2228–2246 (2010).
(
10.1002/adma.200904054
) / Adv. Mater. by T Sekitani (2010) -
Takei, K. et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Mater. 9, 821–826 (2010).
(
10.1038/nmat2835
) / Nature Mater. by K Takei (2010) -
Mannsfeld, S. C. B. et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature Mater. 9, 859–864 (2010).
(
10.1038/nmat2834
) / Nature Mater. by SCB Mannsfeld (2010) -
Kim, D. H. et al. Epidermal electronics. Science 333, 838–843 (2011).
(
10.1126/science.1206157
) / Science by DH Kim (2011) -
Lipomi, D. J. et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotech. 6, 788–792 (2011).
(
10.1038/nnano.2011.184
) / Nature Nanotech. by DJ Lipomi (2011) -
Takahashi, T., Takei, K., Gillies, A. G., Fearing, R. S. & Javey, A. Carbon nanotube active-matrix backplanes for conformal electronics and sensors. Nano Lett. 11, 5408–5413 (2011).
(
10.1021/nl203117h
) / Nano Lett. by T Takahashi (2011) -
Tee, B. C-K., Wang, C., Allen, R. & Bao, Z. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nature Nanotech. 7, 825–831 (2012).
(
10.1038/nnano.2012.192
) / Nature Nanotech. by BC-K Tee (2012) -
Lu, N., Lu, C., Yang, S. & Rogers, J. Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv. Funct. Mater. 22, 4044–4050 (2012).
(
10.1002/adfm.201200498
) / Adv. Funct. Mater. by N Lu (2012) -
Pang, C. et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nature Mater. 11, 795–801 (2012).
(
10.1038/nmat3380
) / Nature Mater. by C Pang (2012) -
Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).
(
10.1126/science.1182383
) / Science by JA Rogers (2010) -
Kim, D. H., Xiao, J., Song, J., Huang, Y. & Rogers, J. A. Stretchable, curvilinear electronics based on inorganic materials. Adv. Mater. 22, 2108–2124 (2010).
(
10.1002/adma.200902927
) / Adv. Mater. by DH Kim (2010) -
Sekitani, T. et al. Organic nonvolatile memory transistors for flexible sensor arrays. Science 326, 1516–1519 (2009).
(
10.1126/science.1179963
) / Science by T Sekitani (2009) -
Park, S-I. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 325, 977–981 (2009).
(
10.1126/science.1175690
) / Science by S-I Park (2009) -
Wang, C., Takei, K., Takahashi, T. & Javey, A. Carbon nanotube electronics—moving forward. Chem. Soc. Rev. 42, 2592–2609 (2013).
(
10.1039/C2CS35325C
) / Chem. Soc. Rev. by C Wang (2013) -
Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I. & Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotech. 1, 60–65 (2006).
(
10.1038/nnano.2006.52
) / Nature Nanotech. by MS Arnold (2006) -
Cao, Q. et al. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454, 495–500 (2008).
(
10.1038/nature07110
) / Nature by Q Cao (2008) -
Sun, D. et al. Flexible high-performance carbon nanotube integrated circuits. Nature Nanotech. 6, 156–161 (2011).
(
10.1038/nnano.2011.1
) / Nature Nanotech. by D Sun (2011) -
Cao, Q. & Rogers, J. A. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects. Adv. Mater. 21, 29–53 (2009).
(
10.1002/adma.200801995
) / Adv. Mater. by Q Cao (2009) -
Zhang, J. et al. Separated carbon nanotube macroelectronics for active matrix organic light-emitting diode displays. Nano Lett. 11, 4852–4858 (2011).
(
10.1021/nl202695v
) / Nano Lett. by J Zhang (2011) -
Tang, C. W. & VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987).
(
10.1063/1.98799
) / Appl. Phys. Lett. by CW Tang (1987) -
Hussain, M., Choa, Y-H. & Niihara, K. Conductive rubber materials for pressure sensors. J. Mater. Sci. Lett. 20, 525–527 (2001).
(
10.1023/A:1010972315505
) / J. Mater. Sci. Lett. by M Hussain (2001) -
Shimojo, M., Namiki, A., Ishikawa, M., Makino, R. & Mabuchi, K. A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method. IEEE Sensors J. 4, 589–596 (2004).
(
10.1109/JSEN.2004.833152
) / IEEE Sensors J. by M Shimojo (2004) -
McAlpine, M. C., Ahmad, H., Wang, D. & Heath, J. R. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nature Mater. 6, 379–384 (2007).
(
10.1038/nmat1891
) / Nature Mater. by MC McAlpine (2007) -
Tian, B. Z. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830–834 (2010).
(
10.1126/science.1192033
) / Science by BZ Tian (2010) -
Ko, H. C. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748–753 (2008).
(
10.1038/nature07113
) / Nature by HC Ko (2008) -
Ramuz, M., Tee, B. C-K., Tok, J. B-H. & Bao, Z. Transparent, optical, pressure sensitive artificial skin for large-area stretchable electronics. Adv. Mater. 24, 3223–3227 (2012).
(
10.1002/adma.201200523
) / Adv. Mater. by M Ramuz (2012) -
Yamada, T. et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotech. 6, 296–301 (2011).
(
10.1038/nnano.2011.36
) / Nature Nanotech. by T Yamada (2011)
Dates
Type | When |
---|---|
Created | 12 years, 1 month ago (July 19, 2013, 3:05 a.m.) |
Deposited | 3 years, 1 month ago (July 6, 2022, 2:31 p.m.) |
Indexed | 1 day, 3 hours ago (Aug. 21, 2025, 2 p.m.) |
Issued | 12 years, 1 month ago (July 21, 2013) |
Published | 12 years, 1 month ago (July 21, 2013) |
Published Online | 12 years, 1 month ago (July 21, 2013) |
Published Print | 11 years, 10 months ago (Oct. 1, 2013) |
@article{Wang_2013, title={User-interactive electronic skin for instantaneous pressure visualization}, volume={12}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat3711}, DOI={10.1038/nmat3711}, number={10}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Wang, Chuan and Hwang, David and Yu, Zhibin and Takei, Kuniharu and Park, Junwoo and Chen, Teresa and Ma, Biwu and Javey, Ali}, year={2013}, month=jul, pages={899–904} }